

Programming Scala

Programming Scala

Dean Wampler and Alex Payne

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Programming Scala
by Dean Wampler and Alex Payne

Copyright © 2009 Dean Wampler and Alex Payne. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Proofreader: Sarah Schneider

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Programming Scala, the
image of a Malayan tapir, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein. This work has been released under the Creative Commons Attribution-Noncommercial
license.

ISBN: 978-0-596-15595-7

[M]

1252446332

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

To Dad and Mom, who always believed in me.

To Ann, who was always there for me.

—Dean

To my mother, who gave me an appreciation for
good writing and the accompanying intellectual

tools with which to attempt to produce it.

To Kristen, for her unending patience, love, and
kindness.

—Alex

Table of Contents

Foreword . xv

Preface . xvii

1. Zero to Sixty: Introducing Scala . 1
Why Scala? 1

If You Are a Java Programmer… 1
If You Are a Ruby, Python, etc. Programmer… 2
Introducing Scala 4
The Seductions of Scala 7

Installing Scala 8
For More Information 10
A Taste of Scala 10
A Taste of Concurrency 16
Recap and What’s Next 21

2. Type Less, Do More . 23
In This Chapter 23
Semicolons 23
Variable Declarations 24
Method Declarations 25

Method Default and Named Arguments (Scala Version 2.8) 26
Nesting Method Definitions 28

Inferring Type Information 29
Literals 36

Integer Literals 36
Floating-Point Literals 37
Boolean Literals 38
Character Literals 38
String Literals 39
Symbol Literals 39

vii

Tuples 40
Option, Some, and None: Avoiding nulls 41
Organizing Code in Files and Namespaces 44
Importing Types and Their Members 45

Imports are Relative 46
Abstract Types And Parameterized Types 47
Reserved Words 49
Recap and What’s Next 52

3. Rounding Out the Essentials . 53
Operator? Operator? 53

Syntactic Sugar 54
Methods Without Parentheses and Dots 55

Precedence Rules 56
Domain-Specific Languages 57
Scala if Statements 58
Scala for Comprehensions 59

A Dog-Simple Example 59
Filtering 60
Yielding 60
Expanded Scope 61

Other Looping Constructs 61
Scala while Loops 61
Scala do-while Loops 62
Generator Expressions 62

Conditional Operators 63
Pattern Matching 63

A Simple Match 64
Variables in Matches 64
Matching on Type 65
Matching on Sequences 65
Matching on Tuples (and Guards) 66
Matching on Case Classes 67
Matching on Regular Expressions 68
Binding Nested Variables in Case Clauses 69
Using try, catch, and finally Clauses 70
Concluding Remarks on Pattern Matching 71

Enumerations 72
Recap and What’s Next 74

4. Traits . 75
Introducing Traits 75

Traits As Mixins 76

viii | Table of Contents

Stackable Traits 82
Constructing Traits 86

Class or Trait? 87
Recap and What’s Next 88

5. Basic Object-Oriented Programming in Scala . 89
Class and Object Basics 89
Parent Classes 91
Constructors in Scala 91

Calling Parent Class Constructors 94
Nested Classes 95
Visibility Rules 96

Public Visibility 98
Protected Visibility 99
Private Visibility 100
Scoped Private and Protected Visibility 102
Final Thoughts on Visibility 110

Recap and What’s Next 110

6. Advanced Object-Oriented Programming In Scala . 111
Overriding Members of Classes and Traits 111

Attempting to Override final Declarations 112
Overriding Abstract and Concrete Methods 112
Overriding Abstract and Concrete Fields 114
Overriding Abstract and Concrete Fields in Traits 114
Overriding Abstract and Concrete Fields in Classes 119
Overriding Abstract Types 120
When Accessor Methods and Fields Are Indistinguishable: The Uni-
form Access Principle 123

Companion Objects 126
Apply 127
Unapply 129
Apply and UnapplySeq for Collections 132
Companion Objects and Java Static Methods 133

Case Classes 136
Syntactic Sugar for Binary Operations 139
The copy Method in Scala Version 2.8 140
Case Class Inheritance 140

Equality of Objects 142
The equals Method 143
The == and != Methods 143
The ne and eq Methods 143
Array Equality and the sameElements Method 143

Table of Contents | ix

Recap and What’s Next 144

7. The Scala Object System . 145
The Predef Object 145
Classes and Objects: Where Are the Statics? 148

Package Objects 150
Sealed Class Hierarchies 151
The Scala Type Hierarchy 155
Linearization of an Object’s Hierarchy 159
Recap and What’s Next 164

8. Functional Programming in Scala . 165
What Is Functional Programming? 165

Functions in Mathematics 166
Variables that Aren’t 166

Functional Programming in Scala 167
Function Literals and Closures 169
Purity Inside Versus Outside 169

Recursion 170
Tail Calls and Tail-Call Optimization 171

Trampoline for Tail Calls 172
Functional Data Structures 172

Lists in Functional Programming 173
Maps in Functional Programming 173
Sets in Functional Programming 174
Other Data Structures in Functional Programming 174

Traversing, Mapping, Filtering, Folding, and Reducing 174
Traversal 175
Mapping 175
Filtering 178
Folding and Reducing 179
Functional Options 181

Pattern Matching 182
Partial Functions 183
Currying 184
Implicits 186

Implicit Conversions 186
Implicit Function Parameters 188

Final Thoughts on Implicits 189
Call by Name, Call by Value 189
Lazy Vals 190
Recap: Functional Component Abstractions 192

x | Table of Contents

9. Robust, Scalable Concurrency with Actors . 193
The Problems of Shared, Synchronized State 193
Actors 193

Actors in Abstract 194
Actors in Scala 194

Sending Messages to Actors 195
The Mailbox 196
Actors in Depth 197
Effective Actors 202

Traditional Concurrency in Scala: Threading and Events 203
One-Off Threads 203
Using java.util.concurrent 204
Events 204

Recap and What’s Next 210

10. Herding XML in Scala . 211
Reading XML 211

Exploring XML 212
Looping and Matching XML 213

Writing XML 214
A Real-World Example 215

Recap and What’s Next 216

11. Domain-Specific Languages in Scala . 217
Internal DSLs 218

A Payroll Internal DSL 222
Infix Operator Notation 223
Implicit Conversions and User-Defined Types 223
Apply Methods 224
Payroll Rules DSL Implementation 224
Internal DSLs: Final Thoughts 229

External DSLs with Parser Combinators 230
About Parser Combinators 230
A Payroll External DSL 230
A Scala Implementation of the External DSL Grammar 233
Generating Paychecks with the External DSL 239
Internal Versus External DSLs: Final Thoughts 244

Recap and What’s Next 245

12. The Scala Type System . 247
Reflecting on Types 248
Understanding Parameterized Types 249

Manifests 250

Table of Contents | xi

Parameterized Methods 251
Variance Under Inheritance 251

Variance of Mutable Types 255
Variance In Scala Versus Java 256
Implementation Notes 259

Type Bounds 259
Upper Type Bounds 259
Lower Type Bounds 260
A Closer Look at Lists 261
Views and View Bounds 263

Nothing and Null 267
Understanding Abstract Types 267

Parameterized Types Versus Abstract Types 270
Path-Dependent Types 272

C.this 273
C.super 273
path.x 274

Value Types 275
Type Designators 275
Tuples 275
Parameterized Types 275
Annotated Types 275
Compound Types 276
Infix Types 276
Function Types 277
Type Projections 279
Singleton Types 279

Self-Type Annotations 279
Structural Types 283
Existential Types 284
Infinite Data Structures and Laziness 285
Recap and What’s Next 288

13. Application Design . 289
Annotations 289
Enumerations Versus Pattern Matching 300
Thoughts On Annotations and Enumerations 304

Enumerations Versus Case Classes and Pattern Matching 304
Using Nulls Versus Options 306

Options and for Comprehensions 308
Exceptions and the Alternatives 311
Scalable Abstractions 313

Fine-Grained Visibility Rules 314

xii | Table of Contents

Mixin Composition 316
Self-Type Annotations and Abstract Type Members 317

Effective Design of Traits 321
Design Patterns 325

The Visitor Pattern: A Better Alternative 326
Dependency Injection in Scala: The Cake Pattern 334

Better Design with Design By Contract 340
Recap and What’s Next 342

14. Scala Tools, Libraries, and IDE Support . 343
Command-Line Tools 343

scalac Command-Line Tool 343
The scala Command-Line Tool 345
The scalap, javap, and jad Command-Line Tools 350
The scaladoc Command-Line Tool 352
The sbaz Command-Line Tool 352
The fsc Command-Line Tool 353

Build Tools 353
Integration with IDEs 353

Eclipse 354
IntelliJ 356
NetBeans 359
Text Editors 360

Test-Driven Development in Scala 361
ScalaTest 361
Specs 363
ScalaCheck 365

Other Notable Scala Libraries and Tools 367
Lift 367
Scalaz 367
Scalax 368
MetaScala 368
JavaRebel 368
Miscellaneous Smaller Libraries 368

Java Interoperability 369
Java and Scala Generics 369
Using Scala Functions in Java 371
JavaBean Properties 374
AnyVal Types and Java Primitives 375
Scala Names in Java Code 375

Java Library Interoperability 377
AspectJ 377
The Spring Framework 381

Table of Contents | xiii

Terracotta 384
Hadoop 384

Recap and What’s Next 385

Appendix: References . 387

Glossary . 393

Index . 407

xiv | Table of Contents

Foreword

If there has been a common theme throughout my career as a programmer, it has been
the quest for better abstractions and better tools to support the craft of writing software.
Over the years, I have come to value one trait more than any other: composability. If
one can write code with good composability, it usually means that other traits we soft-
ware developers value—such as orthogonality, loose coupling, and high cohesion—
are already present. It is all connected.

When I discovered Scala some years ago, the thing that made the biggest impression
on me was its composability. Through some very elegant design choices and simple yet
powerful abstractions that were taken from the object-oriented and functional
programming worlds, Martin Odersky has managed to create a language with high
cohesion and orthogonal, deep abstractions that invites composability in all dimensions
of software design. Scala is truly a SCAlable LAnguage that scales with usage, from
scripting all the way up to large-scale enterprise applications and middleware. Scala
was born out of academia, but it has grown into a pragmatic and practical language
that is very much ready for real-world production use.

What excites me most about this book is that it’s so practical. Dean and Alex have done
a fantastic job, not only by explaining the language through interesting discussions and
samples, but also by putting it in the context of the real world. Itʼs written for the
programmer who wants to get things done. I had the pleasure of getting to know Dean
some years ago when we were both part of the aspect-oriented programming com-
munity. Dean holds a rare mix of deep analytical academic thinking and a pragmatic,
get-things-done kind of mentality. Alex, whom I’ve had the pleasure to meet once, is
leading the API team at Twitter, Inc. Alex has played a leading role in moving Twitter’s
code and infrastructure to Scala, making it one on the first companies to successfully
deploy Scala in production.

xv

You are about to learn how to write reusable components using mixin and function
composition; how to write concurrent applications using Scala’s Actors; how to make
effective use of Scala’s XML/XPath support; how to utilize Scalaʼs rich, flexible, and
expressive syntax to build Domain-Specific Languages; how to effectively test your
Scala code; how to use Scala with popular frameworks such as Spring, Hadoop, and
Terracotta; and much, much more. Enjoy the ride. I sure did.

—Jonas Bonér
Independent Consultant, Scalable Solutions AB

August, 2009

xvi | Foreword

Preface

Programming Scala introduces an exciting new language that offers all the benefits of
a modern object model, functional programming, and an advanced type system. Packed
with code examples, this comprehensive book teaches you how to be productive with
Scala quickly, and explains what makes this language ideal for today’s scalable, dis-
tributed, component-based applications that support concurrency and distribution.
You’ll also learn how Scala takes advantage of the advanced Java Virtual Machine as a
platform for programming languages.

Learn more at http://programmingscala.com or at the book’s catalog page.

Welcome to Programming Scala
Programming languages become popular for many reasons. Sometimes, programmers
on a given platform prefer a particular language, or one is institutionalized by a vendor.
Most Mac OS programmers use Objective-C. Most Windows programmers use C++
and .NET languages. Most embedded-systems developers use C and C++.

Sometimes, popularity derived from technical merit gives way to fashion and fanati-
cism. C++, Java, and Ruby have been the objects of fanatical devotion among
programmers.

Sometimes, a language becomes popular because it fits the needs of its era. Java was
initially seen as a perfect fit for browser-based, rich client applications. Smalltalk
captured the essence of object-oriented programming (OOP) as that model of pro-
gramming entered the mainstream.

Today, concurrency, heterogeneity, always-on services, and ever-shrinking develop-
ment schedules are driving interest in functional programming (FP). It appears that the
dominance of object-oriented programming may be over. Mixing paradigms is becom-
ing popular, even necessary.

We gravitated to Scala from other languages because Scala embodies many of the op-
timal qualities we want in a general-purpose programming language for the kinds of
applications we build today: reliable, high-performance, highly concurrent Internet and
enterprise applications.

xvii

http://programmingscala.com
http://oreilly.com/catalog/9780596155957/

Scala is a multi-paradigm language, supporting both object-oriented and functional
programming approaches. Scala is scalable, suitable for everything from short scripts
up to large-scale, component-based applications. Scala is sophisticated, incorporating
state-of-the-art ideas from the halls of computer science departments worldwide. Yet
Scala is practical. Its creator, Martin Odersky, participated in the development of Java
for years and understands the needs of professional developers.

Both of us were seduced by Scala, by its concise, elegant, and expressive syntax and by
the breadth of tools it put at our disposal. In this book, we strive to demonstrate why
all these qualities make Scala a compelling and indispensable programming language.

If you are an experienced developer who wants a fast, thorough introduction to Scala,
this book is for you. You may be evaluating Scala as a replacement for or complement
to your current languages. Maybe you have already decided to use Scala, and you need
to learn its features and how to use it well. Either way, we hope to illuminate this
powerful language for you in an accessible way.

We assume that you are well versed in object-oriented programming, but we don’t
assume that you have prior exposure to functional programming. We assume that you
are experienced in one or more other programming languages. We draw parallels to
features in Java, C#, Ruby, and other languages. If you know any of these languages,
we’ll point out similar features in Scala, as well as many features that are new.

Whether you come from an object-oriented or functional programming background,
you will see how Scala elegantly combines both paradigms, demonstrating their com-
plementary nature. Based on many examples, you will understand how and when to
apply OOP and FP techniques to many different design problems.

In the end, we hope that you too will be seduced by Scala. Even if Scala does not end
up becoming your day-to-day language, we hope you will gain insights that you can
apply regardless of which language you are using.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, file names, and file extensions. Many
italicized terms are defined in the Glossary on page 393.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xviii | Preface

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Scala by Dean Wampler and
Alex Payne. Copyright 2009 Dean Wampler and Alex Payne, 978-0-596-15595-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Getting the Code Examples
You can download the code examples from http://examples.oreilly.com/
9780596155964/. Unzip the files to a convenient location. See the README.txt file in
the distribution for instructions on building and using the examples.

Some of the example files can be run as scripts using the scala command. Others must
be compiled into class files. Some files contain deliberate errors and won’t compile. We
have adopted a file naming convention to indicate each of these cases, although as you
learn Scala it should become obvious from the contents of the files, in most cases:

*-script.scala
Files that end in -script.scala can be run on a command line using scala, e.g., scala
foo-script.scala. You can also start scala in the interpreter mode (when you

Preface | xix

mailto:permissions@oreilly.com
http://examples.oreilly.com/9780596155964/
http://examples.oreilly.com/9780596155964/

don’t specify a script file) and load any script file in the interpreter using the :load
filename command.

*-wont-compile.scala
Files that end in -wont-compile.scala contain deliberate errors that will cause them
to fail to compile. We use this naming convention, along with one or more em-
bedded comments about the errors, so it will be clear that they are invalid. Also,
these files are skipped by the build process for the examples.

sake.scala
Files named sake.scala are used by our build tool, called sake. The README.txt
file describes this tool.

*.scala
All other Scala files must be compiled using scalac. In the distribution, they are
used either by other compiled or script files, such as tests, not all of which are listed
in this book.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596155957/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://oreilly.com

Acknowledgments
As we developed this book, many people read early drafts and suggested numerous
improvements to the text, for which we are eternally grateful. We are especially grateful
to Steve Jensen, Ramnivas Laddad, Marcel Molina, Bill Venners, and Jonas Bonér for
their extensive feedback.

Much of the feedback we received came through the Safari Rough Cuts releases and
the online edition available at http://programmingscala.com. We are grateful for the
feedback provided by (in no particular order) Iulian Dragos, Nikolaj Lindberg, Matt
Hellige, David Vydra, Ricky Clarkson, Alex Cruise, Josh Cronemeyer, Tyler Jennings,
Alan Supynuk, Tony Hillerson, Roger Vaughn, Arbi Sookazian, Bruce Leidl, Daniel
Sobral, Eder Andres Avila, Marek Kubica, Henrik Huttunen, Bhaskar Maddala, Ged
Byrne, Derek Mahar, Geoffrey Wiseman, Peter Rawsthorne, Geoffrey Wiseman, Joe
Bowbeer, Alexander Battisti, Rob Dickens, Tim MacEachern, Jason Harris, Steven
Grady, Bob Follek, Ariel Ortiz, Parth Malwankar, Reid Hochstedler, Jason Zaugg, Jon
Hanson, Mario Gleichmann, David Gates, Zef Hemel, Michael Yee, Marius Kreis,
Martin Süsskraut, Javier Vegas, Tobias Hauth, Francesco Bochicchio, Stephen Duncan
Jr., Patrik Dudits, Jan Niehusmann, Bill Burdick, David Holbrook, Shalom Deitch,
Jesper Nordenberg, Esa Laine, Gleb Frank, Simon Andersson, Patrik Dudits, Chris
Lewis, Julian Howarth, Dirk Kuzemczak, Henri Gerrits, John Heintz, Stuart Roebuck,
and Jungho Kim. Many other readers for whom we only have usernames also provided
feedback. We wish to thank Zack, JoshG, ewilligers, abcoates, brad, teto, pjcj, mkleint,
dandoyon, Arek, rue, acangiano, vkelman, bryanl, Jeff, mbaxter, pjb3, kxen, hiper-
tracker, ctran, Ram R., cody, Nolan, Joshua, Ajay, Joe, and anonymous contributors.
We apologize if we have overlooked anyone!

Our editor, Mike Loukides, knows how to push and prod gentle. He’s been a great help
throughout this crazy process. Many other people at O’Reilly were always there to
answer our questions and help us move forward.

Preface | xxi

http://oreilly.com/catalog/9780596155957/
mailto:bookquestions@oreilly.com
http://oreilly.com
http://programmingscala.com

We thank Jonas Bonér for writing the Foreword for the book. Jonas is a longtime friend
and collaborator from the aspect-oriented programming (AOP) community. For years,
he has done pioneering work in the Java community. Now he is applying his energies
to promoting Scala and growing that community.

Bill Venners graciously provided the quote on the back cover. The first published book
on Scala, Programming in Scala (Artima), that he cowrote with Martin Odersky and
Lex Spoon, is indispensable for the Scala developer. Bill has also created the wonderful
ScalaTest library.

We have learned a lot from fellow developers around the world. Besides Jonas and Bill,
Debasish Ghosh, James Iry, Daniel Spiewak, David Pollack, Paul Snively, Ola Bini,
Daniel Sobral, Josh Suereth, Robey Pointer, Nathan Hamblen, Jorge Ortiz, and others
have illuminated dark corners with their blog entries, forum discussions, and personal
conversations.

Dean thanks his colleagues at Object Mentor and several developers at client sites for
many stimulating discussions on languages, software design, and the pragmatic issues
facing developers in industry. The members of the Chicago Area Scala Enthusiasts
(CASE) group have also been a source of valuable feedback and inspiration.

Alex thanks his colleagues at Twitter for their encouragement and superb work in
demonstrating Scala’s effectiveness as a language. He also thanks the Bay Area Scala
Enthusiasts (BASE) for their motivation and community.

Most of all, we thank Martin Odersky and his team for creating Scala.

xxii | Preface

CHAPTER 1

Zero to Sixty: Introducing Scala

Why Scala?
Today’s enterprise and Internet applications must balance a number of concerns. They
must be implemented quickly and reliably. New features must be added in short, in-
cremental cycles. Beyond simply providing business logic, applications must support
secure access, persistence of data, transactional behavior, and other advanced features.
Applications must be highly available and scalable, requiring designs that support
concurrency and distribution. Applications are networked and provide interfaces for
both people and other applications to use.

To meet these challenges, many developers are looking for new languages and tools.
Venerable standbys like Java, C#, and C++ are no longer optimal for developing the
next generation of applications.

If You Are a Java Programmer…
Java was officially introduced by Sun Microsystems in May of 1995, at the advent of
widespread interest in the Internet. Java was immediately hailed as an ideal language
for writing browser-based applets, where a secure, portable, and developer-friendly
application language was needed. The reigning language of the day, C++, was not
suitable for this domain.

Today, Java is more often used for server-side applications. It is one of the most popular
languages in use for the development of web and enterprise applications.

However, Java was a child of its time. Now it shows its age. In 1995, Java provided a
syntax similar enough to C++ to entice C++ developers, while avoiding many of that
language’s deficiencies and “sharp edges.” Java adopted the most useful ideas for the
development problems of its era, such as object-oriented programming (OOP), while
discarding more troublesome techniques, such as manual memory management. These
design choices struck an excellent balance that minimized complexity and maximized
developer productivity, while trading-off performance compared to natively compiled

1

code. While Java has evolved since its birth, many people believe it has grown too
complex without adequately addressing some newer development challenges.

Developers want languages that are more succinct and flexible to improve their pro-
ductivity. This is one reason why so-called scripting languages like Ruby and Python
have become more popular recently.

The never-ending need to scale is driving architectures toward pervasive concurrency.
However, Java’s concurrency model, which is based on synchronized access to shared,
mutable state, results in complex and error-prone programs.

While the Java language is showing its age, the Java Virtual Machine (JVM) on which
it runs continues to shine. The optimizations performed by today’s JVM are extraor-
dinary, allowing byte code to outperform natively compiled code in many cases. Today,
many developers believe that using the JVM with new languages is the path forward.
Sun is embracing this trend by employing many of the lead developers of JRuby and
Jython, which are JVM ports of Ruby and Python, respectively.

The appeal of Scala for the Java developer is that it gives you a newer, more modern
language, while leveraging the JVM’s amazing performance and the wealth of Java
libraries that have been developed for over a decade.

If You Are a Ruby, Python, etc. Programmer…
Dynamically typed languages like Ruby, Python, Groovy, JavaScript, and Smalltalk
offer very high productivity due to their flexibility, powerful metaprogramming, and
elegance.

Statically Typed Versus Dynamically Typed Languages
One of the fundamental language design choices is static versus dynamic typing.

The word “typing” is used in many contexts in software. The following is a “plausible”
definition that is useful for our purposes.

A type system is a tractable syntactic method for preserving the absence of certain
program behaviors by classifying phrases according to the kinds of values they
compute.

—Benjamin C. Pierce, Types and Programming Languages (MIT Press, 2002)

Note the emphasis on how a type system allows reasoning about what a system ex-
cludes from happening. That’s generally easier than trying to determine the set of all
allowed possibilities. A type system is used to catch various errors, like unsupported
operations on particular data structures, attempting to combine data in an undefined
way (e.g., trying to add an integer to a string), breaking abstractions, etc.

Informally, in static typing, a variable is bound to a particular type for its lifetime. Its
type can’t be changed and it can only reference type-compatible instances. That is, if a
variable refers to a value of type A, you can’t assign a value of a different type B to it,
unless B is a subtype of A, for some reasonable definition of “subtype.”

2 | Chapter 1: Zero to Sixty: Introducing Scala

In dynamic typing, the type is bound to the value, not the variable. So, a variable might
refer to a value of type A, then be reassigned later to a value of an unrelated type X.

The term dynamically typed is used because the type of a variable is evaluated when it
is used during runtime, while in a statically typed language the type is evaluated at parse
time.

This may seem like a small distinction, but it has a pervasive impact on the philosophy,
design, and implementation of a language. We’ll explore some of these implications as
we go through the book.

Scala and Java are statically typed languages, whereas Ruby, Python, Groovy, Java-
Script, and Smalltalk are dynamically typed languages.

For simplicity, we will often use the terms static language and dynamic language as
shorthands for statically typed language and dynamically typed language, respectively.

An orthogonal design consideration is strong versus weak typing. In strong typing, every
variable (for static typing) or value (for dynamic typing) must have an unambiguous
type. In weak typing, a specific type is not required. While most languages allow some
mixture of strong versus weak typing, Scala, Java, and Ruby are predominantly strongly
typed languages. Some languages, like C and Perl, are more weakly typed.

Despite their productivity advantages, dynamic languages may not be the best choices
for all applications, particularly for very large code bases and high-performance appli-
cations. There is a longstanding, spirited debate in the programming community about
the relative merits of dynamic versus static typing. Many of the points of comparison
are somewhat subjective. We won’t go through all the arguments here, but we will offer
a few thoughts for consideration.

Optimizing the performance of a dynamic language is more challenging than for a static
language. In a static language, optimizers can exploit the type information to make
decisions. In a dynamic language, fewer such clues are available for the optimizer,
making optimization choices harder. While recent advancements in optimizations for
dynamic languages are promising, they lag behind the state of the art for static lan-
guages. So, if you require very high performance, static languages are probably a safer
choice.

Static languages can also benefit the development process. Integrated development
environment (IDE) features like autocompletion (sometimes called code sense) are
easier to implement for static languages, again because of the extra type information
available. The more explicit type information in static code promotes better “self-
documentation,” which can be important for communicating intent among developers,
especially as a project grows.

When using a static language, you have to think about appropriate type choices more
often, which forces you to weigh design choices more carefully. While this may slow
down daily design decisions, thinking through the types in the application can result
in a more coherent design over time.

Why Scala? | 3

Another small benefit of static languages is the extra checking the compiler performs.
We think this advantage is often oversold, as type mismatch errors are a small fraction
of the runtime errors you typically see. The compiler can’t find logic errors, which are
far more significant. Only a comprehensive, automated test suite can find logic errors.
For dynamically typed languages, the tests must cover possible type errors, too. If you
are coming from a dynamically typed language, you may find that your test suites are
a little smaller as a result, but not that much smaller.

Many developers who find static languages too verbose often blame static typing for
the verbosity when the real problem is a lack of type inference. In type inference, the
compiler infers the types of values based on the context. For example, the compiler will
recognize that x = 1 + 3 means that x must be an integer. Type inference reduces
verbosity significantly, making the code feel more like code written in a dynamic
language.

We have worked with both static and dynamic languages, at various times. We find
both kinds of languages compelling for different reasons. We believe the modern soft-
ware developer must master a range of languages and tools. Sometimes, a dynamic
language will be the right tool for the job. At other times, a static language like Scala is
just what you need.

Introducing Scala
Scala is a language that addresses the major needs of the modern developer. It is a
statically typed, mixed-paradigm, JVM language with a succinct, elegant, and flexible
syntax, a sophisticated type system, and idioms that promote scalability from small,
interpreted scripts to large, sophisticated applications. That’s a mouthful, so let’s look
at each of those ideas in more detail:

Statically typed
As we described in the previous section, a statically typed language binds the type
to a variable for the lifetime of that variable. In contrast, dynamically typed lan-
guages bind the type to the actual value referenced by a variable, meaning that the
type of a variable can change along with the value it references.

Of the set of newer JVM languages, Scala is one of the few that is statically typed,
and it is the best known among them.

Mixed paradigm—object-oriented programming
Scala fully supports object-oriented programming (OOP). Scala improves upon
Java’s support for OOP with the addition of traits, a clean way of implementing
classes using mixin composition. Scala’s traits work much like Ruby’s modules. If
you’re a Java programmer, think of traits as unifying interfaces with their
implementations.

In Scala, everything is really an object. Scala does not have primitive types, like
Java. Instead, all numeric types are true objects. However, for optimal

4 | Chapter 1: Zero to Sixty: Introducing Scala

performance, Scala uses the underlying primitives types of the runtime whenever
possible. Also, Scala does not support “static” or class-level members of types, since
they are not associated with an actual instance. Instead, Scala supports a singleton
object construct to support those cases where exactly one instance of a type is
needed.

Mixed paradigm—functional programming
Scala fully supports functional programming (FP). FP is a programming paradigm
that is older than OOP, but it has been sheltered in the ivory towers of academia
until recently. Interest in FP is increasing because of the ways it simplifies certain
design problems, especially concurrency. “Pure” functional languages don’t allow
for any mutable state, thereby avoiding the need for synchronization on shared
access to mutable state. Instead, programs written in pure functional languages
communicate by passing messages between concurrent, autonomous processes.
Scala supports this model with its Actors library, but it allows for both mutable
and immutable variables.

Functions are “first-class” citizens in FP, meaning they can be assigned to variables,
passed to other functions, etc., just like other values. This feature promotes com-
position of advanced behavior using primitive operations. Because Scala adheres
to the dictum that everything is an object, functions are themselves objects in Scala.

Scala also offers closures, a feature that dynamic languages like Python and Ruby
have adopted from the functional programming world, and one sadly absent from
recent versions of Java. Closures are functions that reference variables from the
scope enclosing the function definition. That is, the variables aren’t passed in as
arguments or defined as local variables within the function. A closure “closes
around” these references, so the function invocation can safely refer to the variables
even when the variables have gone out of scope! Closures are such a powerful
abstraction that object systems and fundamental control structures are often
implemented using them.

A JVM and .NET language
While Scala is primarily known as a JVM language, meaning that Scala generates
JVM byte code, a .NET version of Scala that generates Common Language Runtime
(CLR) byte code is also under development. When we refer to the underlying
“runtime,” we will usually discuss the JVM, but most of what we will say applies
equally to both runtimes. When we discuss JVM-specific details, they generalize
to the .NET version, except where noted.

The Scala compiler uses clever techniques to map Scala extensions to valid byte
code idioms. From Scala, you can easily invoke byte code that originated as Java
source (for the JVM) or C# source (for .NET). Conversely, you can invoke Scala
code from Java, C#, etc. Running on the JVM and CLR allows the Scala developer
to leverage available libraries and to interoperate with other languages hosted on
those runtimes.

Why Scala? | 5

A succinct, elegant, and flexible syntax
Java syntax can be verbose. Scala uses a number of techniques to minimize un-
necessary syntax, making Scala code as succinct as code in most dynamically typed
languages. Type inference minimizes the need for explicit type information in many
contexts. Declarations of types and functions are very concise.

Scala allows function names to include non-alphanumeric characters. Combined
with some syntactic sugar, this feature permits the user to define methods that look
and behave like operators. As a result, libraries outside the core of the language
can feel “native” to users.

A sophisticated type system
Scala extends the type system of Java with more flexible generics and a number of
more advanced typing constructs. The type system can be intimidating at first, but
most of the time you won’t need to worry about the advanced constructs. Type
inference helps by automatically inferring type signatures, so that the user doesn’t
have to provide trivial type information manually. When you need them, though,
the advanced type features provide you with greater flexibility for solving design
problems in a type-safe way.

Scalable—architectures
Scala is designed to scale from small, interpreted scripts to large, distributed ap-
plications. Scala provides four language mechanisms that promote scalable com-
position of systems: 1) explicit self types; 2) abstract type members and generics;
3) nested classes; and 4) mixin composition using traits.

No other language provides all these mechanisms. Together, they allow applica-
tions to be constructed from reusable “components” in a type-safe and succinct
manner. As we will see, many common design patterns and architectural techni-
ques like dependency injection are easy to implement in Scala without the boiler-
plate code or lengthy XML configuration files that can make Java development
tedious.

Scalable—performance
Because Scala code runs on the JVM and the CLR, it benefits from all the perform-
ance optimizations provided by those runtimes and all the third-party tools that
support performance and scalability, such as profilers, distributed cache libraries,
clustering mechanisms, etc. If you trust Java’s and C#’s performance, you can trust
Scala’s performance. Of course, some particular constructs in the language and
some parts of the library may perform significantly better or worse than alternative
options in other languages. As always, you should profile your code and optimize
it when necessary.

It might appear that OOP and FP are incompatible. In fact, a design philosophy of Scala
is that OOP and FP are more synergistic than opposed. The features of one approach
can enhance the other.

6 | Chapter 1: Zero to Sixty: Introducing Scala

In FP, functions have no side effects and variables are immutable, while in OOP, mu-
table state and side effects are common, even encouraged. Scala lets you choose the
approach that best fits your design problems. Functional programming is especially
useful for concurrency, since it eliminates the need to synchronize access to mutable
state. However, “pure” FP can be restrictive. Some design problems are easier to solve
with mutable objects.

The name Scala is a contraction of the words scalable language. While this suggests
that the pronunciation should be scale-ah, the creators of Scala actually pronounce it
scah-lah, like the Italian word for “stairs.” The two “a”s are pronounced the same.

Scala was started by Martin Odersky in 2001. Martin is a professor in the School of
Computer and Communication Sciences at the Ecole Polytechnique Fédérale de Lau-
sanne (EPFL). He spent his graduate years working in the group headed by Niklaus
Wirth, of Pascal fame. Martin worked on Pizza, an early functional language on the
JVM. He later worked on GJ, a prototype of what later became Generics in Java, with
Philip Wadler of Haskell fame. Martin was hired by Sun Microsystems to produce the
reference implementation of javac, the Java compiler that ships with the Java Developer
Kit (JDK) today.

Martin Odersky’s background and experience are evident in the language. As you learn
Scala, you come to understand that it is the product of carefully considered design
decisions, exploiting the state of the art in type theory, OOP, and FP. Martin’s expe-
rience with the JVM is evident in Scala’s elegant integration with that platform. The
synthesis it creates between OOP and FP is an excellent “best of both worlds” solution.

The Seductions of Scala
Today, our industry is fortunate to have a wide variety of language options. The power,
flexibility, and elegance of dynamically typed languages have made them very popular
again. Yet the wealth of Java and .NET libraries and the performance of the JVM and
CLR meet many practical needs for enterprise and Internet projects.

Scala is compelling because it feels like a dynamically typed scripting language, due to
its succinct syntax and type inference. Yet Scala gives you all the benefits of static typing,
a modern object model, functional programming, and an advanced type system. These
tools let you build scalable, modular applications that can reuse legacy Java and .NET
APIs and leverage the performance of the JVM and CLR.

Scala is a language for professional developers. Compared to languages like Java and
Ruby, Scala is a more difficult language to master because it requires competency with
OOP, FP, and static typing to use it most effectively. It is tempting to prefer the relative
simplicity of dynamically typed languages. Yet this simplicity can be deceptive. In a
dynamically typed language, it is often necessary to use metaprogramming features to
implement advanced designs. While metaprogramming is powerful, using it well takes
experience and the resulting code tends to be hard to understand, maintain, and debug.

Why Scala? | 7

In Scala, many of the same design goals can be achieved in a type-safe manner by
exploiting its type system and mixin composition through traits.

We feel that the extra effort required day to day to use Scala will promote more careful
reflection about your designs. Over time, this discipline will yield more coherent, mod-
ular, and maintainable applications. Fortunately, you don’t need all of the sophistica-
tion of Scala all of the time. Much of your code will have the simplicity and clarity of
code written in your favorite dynamically typed language.

An alternative strategy is to combine several, simpler languages, e.g., Java for object-
oriented code and Erlang for functional, concurrent code. Such a decomposition can
work, but only if your system decomposes cleanly into such discrete parts and your
team can manage a heterogeneous environment. Scala is attractive for situations in
which a single, all-in-one language is preferred. That said, Scala code can happily co-
exist with other languages, especially on the JVM or .NET.

Installing Scala
To get up and running as quickly as possible, this section describes how to install the
command-line tools for Scala, which are all you need to work with the examples in the
book. For details on using Scala in various editors and IDEs, see “Integration with
IDEs” on page 353. The examples used in this book were written and compiled using
Scala version 2.7.5.final, the latest release at the time of this writing, and “nightly
builds” of Scala version 2.8.0, which may be finalized by the time you read this.

Version 2.8 introduces many new features, which we will highlight
throughout the book.

We will work with the JVM version of Scala in this book. First, you must have Java 1.4
or greater installed (1.5 or greater is recommended). If you need to install Java, go to
http://www.java.com/en/download/manual.jsp and follow the instructions to install Java
on your machine.

The official Scala website is http://www.scala-lang.org/. To install Scala, go to the
downloads page. Download the installer for your environment and follow the instruc-
tions on the downloads page.

The easiest cross-platform installer is the IzPack installer. Download the Scala JAR file,
either scala-2.7.5.final-installer.jar or scala-2.8.0.N-installer.jar, where N is the latest
release of the 2.8.0 version. Go to the download directory in a terminal window, and
install Scala with the java command. Assuming you downloaded scala-2.8.0.final-
installer.jar, run the following command, which will guide you through the process:

java -jar scala-2.8.0.final-installer.jar

8 | Chapter 1: Zero to Sixty: Introducing Scala

http://www.java.com/en/download/manual.jsp
http://www.scala-lang.org/
http://www.scala-lang.org/downloads

On Mac OS X, the easiest route to a working Scala installation is via
MacPorts. Follow the installation instructions at http://www.macports
.org/, then sudo port install scala. You’ll be up and running in a few
minutes.

Throughout this book, we will use the symbol scala-home to refer to the “root” directory
of your Scala installation.

On Unix, Linux, and Mac OS X systems, you will need to run this
command as the root user or using the sudo command if you want to
install Scala under a system directory, e.g., scala-home = /usr/local/
scala-2.8.0.final.

As an alternative, you can download and expand the compressed TAR file (e.g.,
scala-2.8.0.final.tgz) or ZIP file (scala-2.8.0.final.zip). On Unix-like systems, expand
the compressed file into a location of your choosing. Afterward, add the scala-home/
bin subdirectory in the new directory to your PATH. For example, if you installed
into /usr/local/scala-2.8.0.final, then add /usr/local/scala-2.8.0.final/bin to your PATH.

To test your installation, run the following command on the command line:

scala -version

We’ll learn more about the scala command-line tool later. You should get something
like the following output:

Scala code runner version 2.8.0.final -- Copyright 2002-2009, LAMP/EPFL

Of course, the version number you see will be different if you installed a different re-
lease. From now on, when we show command output that contains the version number,
we’ll show it as version 2.8.0.final.

Congratulations, you have installed Scala! If you get an error message along the lines
of scala: command not found, make sure your environment’s PATH is set properly to
include the correct bin directory.

Scala versions 2.7.X and earlier are compatible with JDK 1.4 and later.
Scala version 2.8 drops 1.4 compatibility. Note that Scala uses many
JDK classes as its own, for example, the String class. On .NET, Scala
uses the corresponding .NET classes.

You can also find downloads for the API documentation and the sources for Scala itself
on the same downloads page.

Installing Scala | 9

http://www.macports.org/
http://www.macports.org/

For More Information
As you explore Scala, you will find other useful resources that are available on http://
scala-lang.org. You will find links for development support tools and libraries, tutorials,
the language specification [ScalaSpec2009], and academic papers that describe features
of the language.

The documentation for the Scala tools and APIs are especially useful. You can browse
the API at http://www.scala-lang.org/docu/files/api/index.html. This documentation was
generated using the scaladoc tool, analogous to Java’s javadoc tool. See “The scaladoc
Command-Line Tool” on page 352 for more information.

You can also download a compressed file of the API documentation for local browsing
using the appropriate link on the downloads page, or you can install it with the sbaz
package tool, as follows:

sbaz install scala-devel-docs

sbaz is installed in the same bin directory as the scala and scalac command-line tools.
The installed documentation also includes details on the scala tool chain (including
sbaz) and code examples. For more information on the Scala command-line tools and
other resources, see Chapter 14.

A Taste of Scala
It’s time to whet your appetite with some real Scala code. In the following examples,
we’ll describe just enough of the details so you understand what’s going on. The goal
is to give you a sense of what programming in Scala is like. We’ll explore the details of
the features in subsequent chapters.

For our first example, you could run it one of two ways: interactively, or as a “script.”

Let’s start with the interactive mode. Start the scala interpreter by typing scala and the
return key on your command line. You’ll see the following output. (Some of the version
numbers may vary.)

Welcome to Scala version 2.8.0.final (Java ...).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

The last line is the prompt that is waiting for your input. The interactive mode of the
scala command is very convenient for experimentation (see “The scala Command-Line
Tool” on page 345 for more details). An interactive interpreter like this is called a REPL:
Read, Evaluate, Print, Loop.

10 | Chapter 1: Zero to Sixty: Introducing Scala

http://scala-lang.org
http://scala-lang.org
http://www.scala-lang.org/docu/files/api/index.html
http://www.scala-lang.org/downloads

Type in the following two lines of code:

val book = "Programming Scala"
println(book)

The actual input and output should look like the following:

scala> val book = "Programming Scala"
book: java.lang.String = Programming Scala

scala> println(book)
Programming Scala

scala>

The first line uses the val keyword to declare a read-only variable named book. Note
that the output returned from the interpreter shows you the type and value of book.
This can be very handy for understanding complex declarations. The second line prints
the value of book, which is “Programming Scala”.

Experimenting with the scala command in the interactive mode (REPL)
is a great way to learn the details of Scala.

Many of the examples in this book can be executed in the interpreter like this. However,
it’s often more convenient to use the second option we mentioned, writing Scala scripts
in a text editor or IDE and executing them with the same scala command. We’ll do
that for most of the remaining examples in this chapter.

In your text editor of choice, save the Scala code in the following example to a file
named upper1-script.scala in a directory of your choosing:

// code-examples/IntroducingScala/upper1-script.scala

class Upper {
 def upper(strings: String*): Seq[String] = {
 strings.map((s:String) => s.toUpperCase())
 }
}

val up = new Upper
Console.println(up.upper("A", "First", "Scala", "Program"))

This Scala script converts strings to uppercase.

By the way, that’s a comment on the first line (with the name of the source file for the
code example). Scala follows the same comment conventions as Java, C#, C++, etc.
A // comment goes to the end of a line, while a /* comment */ can cross line boundaries.

A Taste of Scala | 11

To run this script, go to a command window, change to the same directory, and run
the following command:

scala upper1-script.scala

The file is interpreted, meaning it is compiled and executed in one step. You should
get the following output:

Array(A, FIRST, SCALA, PROGRAM)

Interpreting Versus Compiling and Running Scala Code
To summarize, if you type scala on the command line without a file argument, the
interpreter runs in interactive mode. You type in definitions and statements that are
evaluated on the fly. If you give the command a scala source file argument, it compiles
and runs the file as a script, as in our scala upper1-script.scala example. Finally, you
can compile Scala files separately and execute the class file, as long as it has a main
method, just as you would normally do with the java command. (We’ll show an ex-
ample shortly.)

There are some subtleties you’ll need to understand about the limitations of using the
interpreter modes versus separate compilation and execution steps. We discuss these
subtleties in “Command-Line Tools” on page 343.

Whenever we refer to executing a script, we mean running a Scala source file with the
scala command.

In the current example, the upper method in the Upper class (no pun intended) converts
the input strings to uppercase and returns them in an array. The last line in the example
converts four strings and prints the resulting Array.

Let’s examine the code in detail, so we can begin to learn Scala syntax. There are a lot
of details in just six lines of code! We’ll explain the general ideas here. All the ideas
used in this example will be explained more thoroughly in later sections of the book.

In the example, the Upper class begins with the class keyword. The class body is inside
the outermost curly braces ({...}).

The upper method definition begins on the second line with the def keyword, followed
by the method name and an argument list, the return type of the method, an equals
sign (=), and then the method body.

The argument list in parentheses is actually a variable-length argument list of Strings,
indicated by the String* type following the colon. That is, you can pass in as many
comma-separated strings as you want (including an empty list). These strings are stored
in a parameter named strings. Inside the method, strings is actually an Array.

12 | Chapter 1: Zero to Sixty: Introducing Scala

When explicit type information for variables is written in the code, these
type annotations follow the colon after the item name (i.e., Pascal-like
syntax). Why doesn’t Scala follow Java conventions? Recall that type
information is often inferred in Scala (unlike Java), meaning we don’t
always show type annotations explicitly. Compared to Java’s
type item convention, the item: type convention is easier for the com-
piler to analyze unambiguously when you omit the colon and the type
annotation and just write item.

The method return type appears after the argument list. In this case, the return type is
Seq[String], where Seq (“sequence”) is a particular kind of collection. It is a parame-
terized type (like a generic type in Java), parameterized here with String. Note that Scala
uses square brackets ([...]) for parameterized types, whereas Java uses angle brackets
(<...>).

Scala allows angle brackets to be used in method names, e.g., naming a
“less than” method < is common. So, to avoid ambiguities, Scala uses
square brackets instead for parameterized types. They can’t be used in
method names. Allowing < and > in method names is why Scala doesn’t
follow Java’s convention for angle brackets.

The body of the upper method comes after the equals sign (=). Why an equals sign?
Why not just curly braces ({...}), like in Java? Because semicolons, function return
types, method arguments lists, and even the curly braces are sometimes omitted, using
an equals sign prevents several possible parsing ambiguities. Using an equals sign also
reminds us that even functions are values in Scala, which is consistent with Scala’s
support of functional programming, described in more detail in Chapter 8.

The method body calls the map method on the strings array, which takes a function
literal as an argument. Function literals are “anonymous” functions. They are similar
to lambdas, closures, blocks, or procs in other languages. In Java, you would have to use
an anonymous inner class here that implements a method defined by an interface, etc.

In this case, we passed in the following function literal:

(s:String) => s.toUpperCase()

It takes an argument list with a single String argument named s. The body of the
function literal is after the “arrow,” =>. It calls toUpperCase() on s. The result of this
call is returned by the function literal. In Scala, the last expression in a function is the
return value, although you can have return statements elsewhere, too. The return key-
word is optional here and is rarely used, except when returning out of the middle of a
block (e.g., in an if statement).

A Taste of Scala | 13

The value of the last expression is the default return value of a function.
No return is required.

So, map passes each String in strings to the function literal and builds up a new col-
lection with the results returned by the function literal.

To exercise the code, we create a new Upper instance and assign it to a variable named
up. As in Java, C#, and similar languages, the syntax new Upper creates a new instance.
The up variable is declared as a read-only “value” using the val keyword.

Finally, we call the upper method on a list of strings, and print out the result with
Console.println(...), which is equivalent to Java’s System.out.println(...).

We can actually simplify our script even further. Consider this simplified version of the
script:

// code-examples/IntroducingScala/upper2-script.scala

object Upper {
 def upper(strings: String*) = strings.map(_.toUpperCase())
}

println(Upper.upper("A", "First", "Scala", "Program"))

This code does exactly the same thing, but with a third fewer characters.

On the first line, Upper is now declared as an object, which is a singleton. We are de-
claring a class, but the Scala runtime will only ever create one instance of Upper. (You
can’t write new Upper, for example.) Scala uses objects for situations where other lan-
guages would use “class-level” members, like statics in Java. We don’t really need
more than one instance here, so a singleton is fine.

Why doesn’t Scala support statics? Since everything is an object in
Scala, the object construct keeps this policy consistent. Java’s static
methods and fields are not tied to an actual instance.

Note that this code is fully thread-safe. We don’t declare any variables that might cause
thread-safety issues. The API methods we use are also thread-safe. Therefore, we don’t
need multiple instances. A singleton object works fine.

The implementation of upper on the second line is also simpler. Scala can usually infer
the return type of the method (but not the types of the method arguments), so we drop
the explicit declaration. Also, because there is only one expression in the method body,
we drop the braces and put the entire method definition on one line. The equals sign
before the method body tells the compiler, as well as the human reader, where the
method body begins.

14 | Chapter 1: Zero to Sixty: Introducing Scala

We have also exploited a shorthand for the function literal. Previously we wrote it as
follows:

(s:String) => s.toUpperCase()

We can shorten it to the following expression:

_.toUpperCase()

Because map takes one argument, a function, we can use the “placeholder” indicator _
instead of a named parameter. That is, the _ acts like an anonymous variable, to which
each string will be assigned before toUpperCase is called. Note that the String type is
inferred for us, too. As we will see, Scala uses _ as a “wildcard” in several contexts.

You can also use this shorthand syntax in some more complex function literals, as we
will see in Chapter 3.

On the last line, using an object rather than a class simplifies the code. Instead of
creating an instance with new Upper, we can just call the upper method on the Upper
object directly (note how this looks like the syntax you would use when calling static
methods in a Java class).

Finally, Scala automatically imports many methods for I/O, like println, so we don’t
need to call Console.println(). We can just use println by itself. (See “The Predef
Object” on page 145 for details on the types and methods that are automatically im-
ported or defined.)

Let’s do one last refactoring. Convert the script into a compiled, command-line tool:

// code-examples/IntroducingScala/upper3.scala

object Upper {
 def main(args: Array[String]) = {
 args.map(_.toUpperCase()).foreach(printf("%s ",_))
 println("")
 }
}

Now the upper method has been renamed main. Because Upper is an object, this main
method works exactly like a static main method in a Java class. It is the entry point to
the Upper application.

In Scala, main must be a method in an object. (In Java, main must be a
static method in a class.) The command-line arguments for the appli-
cation are passed to main in an array of strings, e.g., args: Array[String].

The first line inside the main method uses the same shorthand notation for map that we
just examined:

args.map(_.toUpperCase())...

A Taste of Scala | 15

The call to map returns a new collection. We iterate through it with foreach. We use a
_ placeholder shortcut again in another function literal that we pass to foreach. In this
case, each string in the collection is passed as an argument to printf:

...foreach(printf("%s ",_))

To be clear, these two uses of _ are completely independent of each other. Method
chaining and function-literal shorthands, as in this example, can take some getting used
to, but once you are comfortable with them, they yield very readable code with minimal
use of temporary variables.

The last line in main adds a final line feed to the output.

This time, you must first compile the code to a JVM .class file using scalac:

scalac upper3.scala

You should now have a file named Upper.class, just as if you had just compiled a Java
class.

You may have noticed that the compiler did not complain when the
file was named upper3.scala and the object was named Upper. Unlike
Java, the file name doesn’t have to match the name of the type with
public scope. (We’ll explore the visibility rules in “Visibility
Rules” on page 96.) In fact, unlike Java, you can have as many public
types in a single file as you want. Furthermore, the directory location of
a file doesn’t have to match the package declaration. However, you can
certainly follow the Java conventions, if you want to.

Now, you can execute this command for any list of strings. Here is an example:

scala -cp . Upper Hello World!

The -cp . option adds the current directory to the search “class path.” You should get
the following output:

 HELLO WORLD!

Therefore, we have met the requirement that a programming language book must start
with a “hello world” program.

A Taste of Concurrency
There are many reasons to be seduced by Scala. One reason is the Actors API included
in the Scala library, which is based on the robust Actors concurrency model built into
Erlang (see [Haller2007]). Here is an example to whet your appetite.

In the Actor model of concurrency ([Agha1987]), independent software entities called
Actors share no state information with each other. Instead, they communicate by

16 | Chapter 1: Zero to Sixty: Introducing Scala

exchanging messages. By eliminating the need to synchronize access to shared, mutable
state, it is far easier to write robust, concurrent applications.

In this example, instances in a geometric Shape hierarchy are sent to an Actor for draw-
ing on a display. Imagine a scenario where a rendering “farm” generates scenes in an
animation. As the rendering of a scene is completed, the shape “primitives” that are
part of the scene are sent to an Actor for a display subsystem.

To begin, we define a Shape class hierarchy:

// code-examples/IntroducingScala/shapes.scala

package shapes {
 class Point(val x: Double, val y: Double) {
 override def toString() = "Point(" + x + "," + y + ")"
 }

 abstract class Shape() {
 def draw(): Unit
 }

 class Circle(val center: Point, val radius: Double) extends Shape {
 def draw() = println("Circle.draw: " + this)
 override def toString() = "Circle(" + center + "," + radius + ")"
 }

 class Rectangle(val lowerLeft: Point, val height: Double, val width: Double)
 extends Shape {
 def draw() = println("Rectangle.draw: " + this)
 override def toString() =
 "Rectangle(" + lowerLeft + "," + height + "," + width + ")"
 }

 class Triangle(val point1: Point, val point2: Point, val point3: Point)
 extends Shape {
 def draw() = println("Triangle.draw: " + this)
 override def toString() =
 "Triangle(" + point1 + "," + point2 + "," + point3 + ")"
 }
}

The Shape class hierarchy is defined in a shapes package. You can declare the package
using Java syntax, but Scala also supports a syntax similar to C#’s “namespace” syntax,
where the entire declaration is scoped using curly braces, as used here. The Java-style
package declaration syntax is far more commonly used, however, being both compact
and readable.

The Point class represents a two-dimensional point on a plane. Note the argument list
after the class name. Those are constructor parameters. In Scala, the whole class body
is the constructor, so you list the arguments for the primary constructor after the class
name and before the class body. (We’ll see how to define auxiliary constructors in
“Constructors in Scala” on page 91.) Because we put the val keyword before each
parameter declaration, they are automatically converted to read-only fields with the

A Taste of Concurrency | 17

same names with public reader methods of the same name. That is, when you instan-
tiate a Point instance, e.g., point, you can read the fields using point.x and point.y. If
you want mutable fields, then use the keyword var. We’ll explore variable declarations
and the val and var keywords in “Variable Declarations” on page 24.

The body of Point defines one method, an override of the familiar toString method in
Java (like ToString in C#). Note that Scala, like C#, requires the override keyword
whenever you override a concrete method. Unlike C#, you don’t have to use a
virtual keyword on the original concrete method. In fact, there is no virtual keyword
in Scala. As before, we omit the curly braces ({...}) around the body of toString, since
it has only one expression.

Shape is an abstract class. Abstract classes in Scala are similar to those in Java and C#.
We can’t instantiate instances of abstract classes, even when all their field and method
members are concrete.

In this case, Shape declares an abstract draw method. We know it is abstract because it
has no body. No abstract keyword is required on the method. Abstract methods in
Scala are just like abstract methods in Java and C#. (See “Overriding Members of
Classes and Traits” on page 111 for more details.)

The draw method returns Unit, which is a type that is roughly equivalent to void in C-
derived languages like Java, etc. (See “The Scala Type Hierarchy” on page 155 for more
details.)

Circle is declared as a concrete subclass of Shape. It defines the draw method to simply
print a message to the console. Circle also overrides toString.

Rectangle is also a concrete subclass of Shape that defines draw and overrides
toString. For simplicity, we assume it is not rotated relative to the x and y axes. Hence,
all we need is one point, the lower lefthand point will do, and the height and width of
the rectangle.

Triangle follows the same pattern. It takes three Points as its constructor arguments.

Both draw methods in Circle, Rectangle, and Triangle use this. As in Java and C#,
this is how an instance refers to itself. In this context, where this is the righthand side
of a String concatenation expression (using the plus sign), this.toString is invoked
implicitly.

Of course, in a real application, you would not implement drawing in
“domain model” classes like this, since the implementations would de-
pend on details like the operating system platform, graphics API, etc.
We will see a better design approach when we discuss traits in Chapter 4.

Now that we have defined our shapes types, let’s return to Actors. We define an Actor
that receives “messages” that are shapes to draw:

18 | Chapter 1: Zero to Sixty: Introducing Scala

// code-examples/IntroducingScala/shapes-actor.scala

package shapes {
 import scala.actors._
 import scala.actors.Actor._

 object ShapeDrawingActor extends Actor {
 def act() {
 loop {
 receive {
 case s: Shape => s.draw()
 case "exit" => println("exiting..."); exit
 case x: Any => println("Error: Unknown message! " + x)
 }
 }
 }
 }
}

The Actor is declared to be part of the shapes package. Next, we have two import
statements.

The first import statement imports all the types in the scala.actors package. In Scala,
the underscore _ is used the way the star * is used in Java.

Because * is a valid character for a function name, it can’t be used as the
import wildcard. Instead, _ is reserved for this purpose.

All the methods and public fields from Actor are imported by the second import. These
are not static imports from the Actor type, as they would be in Java. Rather, they are
imported from an object that is also named Actor. The class and object can have the
same name, as we will see in “Companion Objects” on page 126.

Our Actor class definition, ShapeDrawingActor, is an object that extends Actor (the type,
not the object). The act method is overridden to do the unique work of the Actor.
Because act is an abstract method, we don’t need to explicitly override it with the
override keyword. Our Actor loops indefinitely, waiting for incoming messages.

During each pass in the loop, the receive method is called. It blocks until a new message
arrives. Why is the code after receive enclosed in curly braces {...} and not parentheses
(...)? We will learn later that there are cases where this substitution is allowed and is
quite useful (see Chapter 3). For now, what you need to know is that the expressions
inside the braces constitute a single function literal that is passed to receive. This func-
tion literal does a pattern match on the message instance to decide how to handle the
message. Because of the case clauses, it looks like a typical switch statement in Java,
for example, and the behavior is very similar.

A Taste of Concurrency | 19

The first case does a type comparison with the message. (There is no explicit variable
for the message instance in the code; it is inferred.) If the message is of type Shape, the
first case matches. The message instance is cast to a Shape and assigned to the variable
s, and then the draw method is called on it.

If the message is not a Shape, the second case is tried. If the message is the string
"exit", the Actor prints a message and terminates execution. Actors should usually
have a way to exit gracefully!

The last case clause handles any other message instance, thereby functioning as the
default case. The Actor reports an error and then drops the message. Any is the parent
of all types in the Scala type hierarchy, like Object is the root type in Java and other
languages. Hence, this case clause will match any message of any type. Pattern matching
is eager; we have to put this case clause at the end, so it doesn’t consume the messages
we are expecting!

Recall that we declared draw as an abstract method in Shape and we implemented
draw in the concrete subclasses. Hence, the code in the first case statement invokes a
polymorphic operation.

Pattern Matching Versus Polymorphism
Pattern matching plays a central role in functional programming just as polymorphism
plays a central role in object-oriented programming. Functional pattern matching is
much more important and sophisticated than the corresponding switch/case state-
ments found in most imperative languages, like Java. We will examine Scala’s support
for pattern matching in more detail in Chapter 8. In our example here, we can begin to
see that joining functional-style pattern matching with object-oriented polymorphic
dispatching is a powerful combination that is a benefit of mixed paradigm languages
like Scala.

Finally, here is a script that uses the ShapeDrawingActor Actor:

// code-examples/IntroducingScala/shapes-actor-script.scala

import shapes._

ShapeDrawingActor.start()

ShapeDrawingActor ! new Circle(new Point(0.0,0.0), 1.0)
ShapeDrawingActor ! new Rectangle(new Point(0.0,0.0), 2, 5)
ShapeDrawingActor ! new Triangle(new Point(0.0,0.0),
 new Point(1.0,0.0),
 new Point(0.0,1.0))
ShapeDrawingActor ! 3.14159

ShapeDrawingActor ! "exit"

20 | Chapter 1: Zero to Sixty: Introducing Scala

The shapes in the shapes package are imported.

The ShapeDrawingActor Actor is started. By default, it runs in its own thread (there are
alternatives we will discuss in Chapter 9), waiting for messages.

Five messages are sent to the Actor, using the syntax actor ! message. The first message
sends a Circle instance. The Actor “draws” the circle. The second message sends a
Rectangle message. The Actor “draws” the rectangle. The third message does the same
thing for a Triangle. The fourth message sends a Double that is approximately equal to
Pi. This is an unknown message for the Actor, so it just prints an error message. The
final message sends an “exit” string, which causes the Actor to terminate.

To try out the Actor example, start by compiling the first two files. You can get
the sources from the O’Reilly download site (see “Getting the Code Exam-
ples” on page xix for details), or you can create them yourself.

Use the following command to compile the files:

 scalac shapes.scala shapes-actor.scala

While the source file names and locations don’t have to match the file contents, you
will notice that the generated class files are written to a shapes directory and there is
one class file for each class we defined. The class file names and locations must conform
to the JVM requirements.

Now you can run the script to see the Actor in action:

 scala -cp . shapes-actor-script.scala

You should see the following output:

Circle.draw: Circle(Point(0.0,0.0),1.0)
Rectangle.draw: Rectangle(Point(0.0,0.0),2.0,5.0)
Triangle.draw: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0))
Error: Unknown message! 3.14159
exiting...

For more on Actors, see Chapter 9.

Recap and What’s Next
We made the case for Scala and got you started with two sample Scala programs, one
of which gave you a taste of Scala’s Actors library for concurrency. Next, we’ll dive into
more Scala syntax, emphasizing various keystroke-economical ways of getting lots of
work done.

Recap and What’s Next | 21

http://examples.oreilly.com/9780596155964/

CHAPTER 2

Type Less, Do More

In This Chapter
We ended the previous chapter with a few “teaser” examples of Scala code. This chapter
discusses uses of Scala that promote succinct, flexible code. We’ll discuss organization
of files and packages, importing other types, variable declarations, miscellaneous syn-
tax conventions, and a few other concepts. We’ll emphasize how the concise syntax of
Scala helps you work better and faster.

Scala’s syntax is especially useful when writing scripts. Separate compile and run steps
aren’t required for simple programs that have few dependencies on libraries outside of
what Scala provides. You compile and run such programs in one shot with the scala
command. If you’ve downloaded the example code for this book, many of the smaller
examples can be run using the scala command, e.g., scala filename.scala. See the
README.txt files in each chapter’s code examples for more details. See also “Com-
mand-Line Tools” on page 343 for more information about using the scala command.

Semicolons
You may have already noticed that there were very few semicolons in the code examples
in the previous chapter. You can use semicolons to separate statements and expres-
sions, as in Java, C, PHP, and similar languages. In most cases, though, Scala behaves
like many scripting languages in treating the end of the line as the end of a statement
or an expression. When a statement or expression is too long for one line, Scala can
usually infer when you are continuing on to the next line, as shown in this example:

// code-examples/TypeLessDoMore/semicolon-example-script.scala

// Trailing equals sign indicates more code on next line
def equalsign = {
 val reallySuperLongValueNameThatGoesOnForeverSoYouNeedANewLine =
 "wow that was a long value name"

 println(reallySuperLongValueNameThatGoesOnForeverSoYouNeedANewLine)

23

http://examples.oreilly.com/9780596155964/

}

// Trailing opening curly brace indicates more code on next line
def equalsign2(s: String) = {
 println("equalsign2: " + s)
}

// Trailing comma, operator, etc. indicates more code on next line
def commas(s1: String,
 s2: String) = {
 println("comma: " + s1 +
 ", " + s2)
}

When you want to put multiple statements or expressions on the same line, you can
use semicolons to separate them. We used this technique in the ShapeDrawingActor
example in “A Taste of Concurrency” on page 16:

case "exit" => println("exiting..."); exit

This code could also be written as follows:

...
case "exit" =>
 println("exiting...")
 exit
...

You might wonder why you don’t need curly braces ({...}) around the two statements
after the case ... => line. You can put them in if you want, but the compiler knows
when you’ve reached the end of the “block” when it finds the next case clause or the
curly brace (}) that ends the enclosing block for all the case clauses.

Omitting optional semicolons means fewer characters to type and fewer characters to
clutter your code. Breaking separate statements onto their own lines increases your
code’s readability.

Variable Declarations
Scala allows you to decide whether a variable is immutable (read-only) or not (read-
write) when you declare it. An immutable “variable” is declared with the keyword
val (think value object):

val array: Array[String] = new Array(5)

To be more precise, the array reference cannot be changed to point to a different
Array, but the array itself can be modified, as shown in the following scala session:

scala> val array: Array[String] = new Array(5)
array: Array[String] = Array(null, null, null, null, null)

scala> array = new Array(2)
<console>:5: error: reassignment to val
 array = new Array(2)

24 | Chapter 2: Type Less, Do More

 ^

scala> array(0) = "Hello"

scala> array
res3: Array[String] = Array(Hello, null, null, null, null)

scala>

An immutable val must be initialized—that is, defined—when it is declared.

A mutable variable is declared with the keyword var:

scala> var stockPrice: Double = 100.
stockPrice: Double = 100.0

scala> stockPrice = 10.
stockPrice: Double = 10.0

scala>

Scala also requires you to initialize a var when it is declared. You can assign a new value
to a var as often as you want. Again, to be precise, the stockPrice reference can be
changed to point to a different Double object (e.g., 10.). In this case, the object that
stockPrice refers to can’t be changed, because Doubles in Scala are immutable.

There are a few exceptions to the rule that you must initialize vals and vars when they
are declared. Both keywords can be used with constructor parameters. When used as
constructor parameters, the mutable or immutable variables specified will be initialized
when an object is instantiated. Both keywords can be used to declare “abstract” (un-
initialized) variables in abstract types. Also, derived types can override vals declared
inside parent types. We’ll discuss these exceptions in Chapter 5.

Scala encourages you to use immutable values whenever possible. As we will see, this
promotes better object-oriented design and is consistent with the principles of “pure”
functional programming. It may take some getting used to, but you’ll find a newfound
confidence in your code when it is written in an immutable style.

The var and val keywords only specify whether the reference can be
changed to refer to a different object (var) or not (val). They don’t spec-
ify whether or not the object they reference is mutable.

Method Declarations
In Chapter 1 we saw several examples of how to define methods, which are functions
that are members of a class. Method definitions start with the def keyword, followed
by optional argument lists, a colon character (:) and the return type of the method, an
equals sign (=), and finally the method body. Methods are implicitly declared “abstract”

Method Declarations | 25

if you leave off the equals sign and method body. The enclosing type is then itself
abstract. We’ll discuss abstract types in more detail in Chapter 5.

We said “optional argument lists,” meaning more than one. Scala lets you define more
than one argument list for a method. This is required for currying methods, which we’ll
discuss in “Currying” on page 184. It is also very useful for defining your own Domain-
Specific Languages (DSLs), as we’ll see in Chapter 11. Note that each argument list is
surrounded by parentheses and the arguments are separated by commas.

If a method body has more than one expression, you must surround it with curly braces
({...}). You can omit the braces if the method body has just one expression.

Method Default and Named Arguments (Scala Version 2.8)
Many languages let you define default values for some or all of the arguments to a
method. Consider the following script with a StringUtil object that lets you join a list
of strings with a user-specified separator:

// code-examples/TypeLessDoMore/string-util-v1-script.scala
// Version 1 of "StringUtil".

object StringUtil {
 def joiner(strings: List[String], separator: String): String =
 strings.mkString(separator)

 def joiner(strings: List[String]): String = joiner(strings, " ")
}
import StringUtil._ // Import the joiner methods.

println(joiner(List("Programming", "Scala")))

There are actually two, “overloaded” joiner methods. The second one uses a single
space as the “default” separator. Having two methods seems a bit wasteful. It would
be nice if we could eliminate the second joiner method and declare that the
separator argument in the first joiner has a default value. In fact, in Scala version 2.8,
you can now do this:

// code-examples/TypeLessDoMore/string-util-v2-v28-script.scala
// Version 2 of "StringUtil" for Scala v2.8 only.

object StringUtil {
 def joiner(strings: List[String], separator: String = " "): String =
 strings.mkString(separator)
}
import StringUtil._ // Import the joiner methods.

println(joiner(List("Programming", "Scala")))

There is another alternative for earlier versions of Scala. You can use implicit arguments,
which we will discuss in “Implicit Function Parameters” on page 188.

26 | Chapter 2: Type Less, Do More

Scala version 2.8 offers another enhancement for method argument lists, named argu-
ments. We could actually write the last line of the previous example in several ways.
All of the following println statements are functionally equivalent:

println(joiner(List("Programming", "Scala")))
println(joiner(strings = List("Programming", "Scala")))
println(joiner(List("Programming", "Scala"), " ")) // #1
println(joiner(List("Programming", "Scala"), separator = " ")) // #2
println(joiner(strings = List("Programming", "Scala"), separator = " "))

Why is this useful? First, if you choose good names for the method arguments, then
your calls to those methods document each argument with a name. For example, com-
pare the two lines with comments #1 and #2. In the first line, it may not be obvious
what the second " " argument is for. In the second case, we supply the name
separator, which suggests the purpose of the argument.

The second benefit is that you can specify the parameters in any order when you specify
them by name. Combined with default values, you can write code like the following:

// code-examples/TypeLessDoMore/user-profile-v28-script.scala
// Scala v2.8 only.

object OptionalUserProfileInfo {
 val UnknownLocation = ""
 val UnknownAge = -1
 val UnknownWebSite = ""
}

class OptionalUserProfileInfo(
 location: String = OptionalUserProfileInfo.UnknownLocation,
 age: Int = OptionalUserProfileInfo.UnknownAge,
 webSite: String = OptionalUserProfileInfo.UnknownWebSite)

println(new OptionalUserProfileInfo)
println(new OptionalUserProfileInfo(age = 29))
println(new OptionalUserProfileInfo(age = 29, location="Earth"))

OptionalUserProfileInfo represents all the “optional” user profile data in your next
Web 2.0 social networking site. It defines default values for all its fields. The script
creates instances with zero or more named parameters. The order of those parameters
is arbitrary.

The examples we have shown use constant values as the defaults. Most languages with
default argument values only allow constants or other values that can be determined
at parse time. However, in Scala, any expression can be used as the default, as long as
it can compile where used. For example, an expression could not refer to an instance
field that will be computed inside the class or object body, but it could invoke a method
on a singleton object.

A related limitation is that a default expression for one parameter can’t refer to another
parameter in the list, unless the parameter that is referenced appears earlier in the list
and the parameters are curried, a concept we’ll discuss in “Currying” on page 184.

Method Declarations | 27

Finally, another constraint on named parameters is that once you provide a name for
a parameter in a method invocation, the rest of the parameters appearing after it must
also be named. For example, new OptionalUserProfileInfo(age = 29, "Earth") would
not compile because the second argument is not invoked by name.

We’ll see another useful example of named and default arguments when we discuss
case classes in “Case Classes” on page 136.

Nesting Method Definitions
Method definitions can also be nested. Here is an implementation of a factorial calcu-
lator, where we use a conventional technique of calling a second, nested method to do
the work:

// code-examples/TypeLessDoMore/factorial-script.scala

def factorial(i: Int): Int = {
 def fact(i: Int, accumulator: Int): Int = {
 if (i <= 1)
 accumulator
 else
 fact(i - 1, i * accumulator)
 }

 fact(i, 1)
}

println(factorial(0))
println(factorial(1))
println(factorial(2))
println(factorial(3))
println(factorial(4))
println(factorial(5))

The second method calls itself recursively, passing an accumulator parameter, where
the result of the calculation is “accumulated.” Note that we return the accumulated
value when the counter i reaches 1. (We’re ignoring invalid negative integers. The
function actually returns 1 for i < 0.) After the definition of the nested method,
factorial calls it with the passed-in value i and the initial accumulator value of 1.

Like a local variable declaration in many languages, a nested method is only visible
inside the enclosing method. If you try to call fact outside of factorial, you will get a
compiler error.

Did you notice that we use i as a parameter name twice, first in the factorial method
and again in the nested fact method? As in many languages, the use of i as a parameter
name for fact “shadows” the outer use of i as a parameter name for factorial. This is
fine, because we don’t need the outer value of i inside fact. We only use it the first
time we call fact, at the end of factorial.

28 | Chapter 2: Type Less, Do More

What if we need to use a variable that is defined outside a nested function? Consider
this contrived example:

// code-examples/TypeLessDoMore/count-to-script.scala

def countTo(n: Int):Unit = {
 def count(i: Int): Unit = {
 if (i <= n) {
 println(i)
 count(i + 1)
 }
 }
 count(1)
}

countTo(5)

Note that the nested count method uses the n value that is passed as a parameter to
countTo. There is no need to pass n as an argument to count. Because count is nested
inside countTo, n is visible to it.

The declaration of a field (member variable) can be prefixed with keywords indicating
the visibility, just as in languages like Java and C#. Similarly the declaration of a non-
nested method can be prefixed with the same keywords. We will discuss the visibility
rules and keywords in “Visibility Rules” on page 96.

Inferring Type Information
Statically typed languages can be very verbose. Consider this typical declaration in Java:

import java.util.Map;
import java.util.HashMap;
...
Map<Integer, String> intToStringMap = new HashMap<Integer, String>();

We have to specify the type parameters <Integer, String> twice. (Scala uses the term
type annotations for explicit type declarations like HashMap<Integer, String>.)

Scala supports type inference (see, for example, [TypeInference] and [Pierce2002]). The
language’s compiler can discern quite a bit of type information from the context, with-
out explicit type annotations. Here’s the same declaration rewritten in Scala, with in-
ferred type information:

import java.util.Map
import java.util.HashMap
...
val intToStringMap: Map[Integer, String] = new HashMap

Recall from Chapter 1 that Scala uses square brackets ([...]) for generic type param-
eters. We specify Map[Integer, String] on the lefthand side of the equals sign. (We are
sticking with Java types for the example.) On the righthand side, we instantiate the
actual type we want, a HashMap, but we don’t have to repeat the type parameters.

Inferring Type Information | 29

For completeness, suppose we don’t actually care if the instance is of type Map (the Java
interface type). It can be of type HashMap for all we care:

import java.util.Map
import java.util.HashMap
...
val intToStringMap2 = new HashMap[Integer, String]

This declaration requires no type annotations on the lefthand side because all of the
type information needed is on the righthand side. The compiler automatically makes
intToStringMap2 a HashMap[Integer,String].

Type inference is used for methods, too. In most cases, the return type of the method
can be inferred, so the : and return type can be omitted. However, type annotations
are required for all method parameters.

Pure functional languages like Haskell (see, e.g., [O’Sullivan2009]) use type inference
algorithms like Hindley-Milner (see [Spiewak2008] for an easily digested explanation).
Code written in these languages require type annotations less often than in Scala, be-
cause Scala’s type inference algorithm has to support object-oriented typing as well as
functional typing. So, Scala requires more type annotations than languages like Haskell.
Here is a summary of the rules for when explicit type annotations are required in Scala.

When Explicit Type Annotations Are Required
In practical terms, you have to provide explicit type annotations for the following
situations:

1. A variable declaration, unless you assign a value to the variable (e.g., val name =
"Programming Scala")

2. All method parameters (e.g., def deposit(amount: Money)...)

3. Method return values in the following cases:

a. When you explicitly call return in a method (even at the end)

b. When a method is recursive

c. When a method is overloaded and one of the methods calls another; the
calling method needs a return type annotation

d. When the inferred return type would be more general than you intended, e.g.,
Any

The Any type is the root of the Scala type hierarchy (see “The Scala Type
Hierarchy” on page 155 for more details). If a block of code returns a
value of type Any unexpectedly, chances are good that the type inferencer
couldn’t figure out what type to return, so it chose the most generic type
possible.

30 | Chapter 2: Type Less, Do More

Let’s look at examples where explicit declarations of method return types are required.
In the following script, the upCase method has a conditional return statement for zero-
length strings:

// code-examples/TypeLessDoMore/method-nested-return-script.scala
// ERROR: Won't compile until you put a String return type on upCase.

def upCase(s: String) = {
 if (s.length == 0)
 return s
 else
 s.toUpperCase()
}

println(upCase(""))
println(upCase("Hello"))

Running this script gives you the following error:

... 6: error: method upCase has return statement; needs result type
 return s
 ^

You can fix this error by changing the first line of the method to the following:

def upCase(s: String): String = {

Actually, for this particular script, an alternative fix is to remove the return keyword
from the line. It is not needed for the code to work properly, but it illustrates our point.

Recursive methods also require an explicit return type. Recall our factorial method
in “Nesting Method Definitions” on page 28. Let’s remove the : Int return type on the
nested fact method:

// code-examples/TypeLessDoMore/method-recursive-return-script.scala
// ERROR: Won't compile until you put an Int return type on "fact".

def factorial(i: Int) = {
 def fact(i: Int, accumulator: Int) = {
 if (i <= 1)
 accumulator
 else
 fact(i - 1, i * accumulator)
 }

 fact(i, 1)
}

Now it fails to compile:

... 9: error: recursive method fact needs result type
 fact(i - 1, i * accumulator)
 ^

Inferring Type Information | 31

Overloaded methods can sometimes require an explicit return type. When one such
method calls another, we have to add a return type to the one doing the calling, as in
this example:

// code-examples/TypeLessDoMore/method-overloaded-return-script.scala
// Version 1 of "StringUtil" (with a compilation error).
// ERROR: Won't compile: needs a String return type on the second "joiner".

object StringUtil {
 def joiner(strings: List[String], separator: String): String =
 strings.mkString(separator)

 def joiner(strings: List[String]) = joiner(strings, " ")
}
import StringUtil._ // Import the joiner methods.

println(joiner(List("Programming", "Scala")))

The two joiner methods concatenate a List of strings together. The first method also
takes an argument for the separator string. The second method calls the first with a
“default” separator of a single space.

If you run this script, you get the following error:

... 9: error: overloaded method joiner needs result type
 def joiner(strings: List[String]) = joiner(strings, "")
 ^

Since the second joiner method calls the first, it requires an explicit String return type.
It should look like this:

def joiner(strings: List[String]): String = joiner(strings, " ")

The final scenario can be subtle, when a more general return type is inferred than what
you expected. You usually see this error when you assign a value returned from a func-
tion to a variable with a more specific type. For example, you were expecting a
String, but the function inferred an Any for the returned object. Let’s see a contrived
example that reflects a bug where this scenario can occur:

// code-examples/TypeLessDoMore/method-broad-inference-return-script.scala
// ERROR: Won't compile; needs a String return type on the second "joiner".

def makeList(strings: String*) = {
 if (strings.length == 0)
 List(0) // #1
 else
 strings.toList
}

val list: List[String] = makeList()

Running this script returns the following error:

...11: error: type mismatch;
 found : List[Any]
 required: List[String]

32 | Chapter 2: Type Less, Do More

val list: List[String] = makeList()
 ^

We intended for makeList to return a List[String], but when strings.length equals
zero, we returned List(0), incorrectly “assuming” that this expression is the correct
way to create an empty list. In fact, we returned a List[Int] with one element, 0. We
should have returned List(). Since the else expression returns a List[String], the
result of strings.toList, the inferred return type for the method is the closest common
supertype of List[Int] and List[String], which is List[Any]. Note that the compila-
tion error doesn’t occur in the function definition. We only see it when we attempt to
assign the value returned from makeList to a List[String] variable.

In this case, fixing the bug is the solution. Alternatively, when there isn’t a bug, it may
be that the compiler just needs the “help” of an explicit return type declaration. Inves-
tigate the method that appears to return the unexpected type. In our experience, you
often find that you modified that method (or another one in the call path) in such a
way that the compiler now infers a more general return type than necessary. Add the
explicit return type in this case.

Another way to prevent these problems is to always declare return types for methods,
especially when defining methods for a public API. Let’s revisit our StringUtil example
and see why explicit declarations are a good idea (adapted from [Smith2009a]).

Here is our StringUtil “API” again with a new method, toCollection:

// code-examples/TypeLessDoMore/string-util-v3.scala
// Version 3 of "StringUtil" (for all versions of Scala).

object StringUtil {
 def joiner(strings: List[String], separator: String): String =
 strings.mkString(separator)

 def joiner(strings: List[String]): String = strings.mkString(" ")

 def toCollection(string: String) = string.split(' ')
}

The toCollection method splits a string on spaces and returns an Array containing the
substrings. The return type is inferred, which is a potential problem, as we will see. The
method is somewhat contrived, but it will illustrate our point. Here is a client of
StringUtil that uses this method:

// code-examples/TypeLessDoMore/string-util-client.scala

import StringUtil._

object StringUtilClient {
 def main(args: Array[String]) = {
 args foreach { s => toCollection(s).foreach { x => println(x) } }
 }
}

Inferring Type Information | 33

If you compile these files with scala, you can run the client as follows:

$ scala -cp ... StringUtilClient "Programming Scala"
Programming
Scala

For the -cp ... class path argument, use the directory where scalac
wrote the class files, which defaults to the current directory (i.e., use
-cp .). If you used the build process in the downloaded code examples,
the class files are written to the build directory (using scalac -d
build ...). In this case, use -cp build.

Everything is fine at this point, but now imagine that the code base has grown.
StringUtil and its clients are now built separately and bundled into different JARs.
Imagine also that the maintainers of StringUtil decide to return a List instead of the
default:

object StringUtil {
 ...

 def toCollection(string: String) = string.split(' ').toList // changed!
}

The only difference is the final call to toList that converts the computed Array to a
List. You recompile StringUtil and redeploy its JAR. Then you run the same client,
without recompiling it first:

$ scala -cp ... StringUtilClient "Programming Scala"
java.lang.NoSuchMethodError: StringUtil$.toCollection(...
 at StringUtilClient$$anonfun$main$1.apply(string-util-client.scala:6)
 at StringUtilClient$$anonfun$main$1.apply(string-util-client.scala:6)
...

What happened? When the client was compiled, StringUtil.toCollection returned an
Array. Then toCollection was changed to return List. In both versions, the method
return value was inferred. Therefore, the client should have been recompiled, too.

However, had an explicit return type of Seq been declared, which is a parent for both
Array and List, then the implementation change would not have forced a recompilation
of the client.

When developing APIs that are built separately from their clients, de-
clare method return types explicitly and use the most general return type
you can. This is especially important when APIs declare abstract meth-
ods (see, e.g., Chapter 4).

There is another scenario to watch for when using declarations of collections like
val map = Map(), as in the following example:

34 | Chapter 2: Type Less, Do More

val map = Map()

map.update("book", "Programming Scala")

... 3: error: type mismatch;
 found : java.lang.String("book")
 required: Nothing
map.update("book", "Programming Scala")
 ^

What happened? The type parameters of the generic type Map were inferred as
[Nothing,Nothing] when the map was created. (We’ll discuss Nothing in “The Scala
Type Hierarchy” on page 155, but its name is suggestive!) We attempted to insert an
incompatible key-value pair of types String and String. Call it a Map to nowhere! The
solution is to parameterize the initial map declaration, e.g., val map = Map[String,
String](), or to specify initial values so that the map parameters are inferred, e.g., val
map = Map("Programming" → "Scala").

Finally, there is a subtle behavior with inferred return types that can cause unexpected
and baffling results (see [ScalaTips]). Consider the following example scala session:

scala> def double(i: Int) { 2 * i }
double: (Int)Unit

scala> println(double(2))
()

Why did the second command print () instead of 4? Look carefully at what the scala
interpreter said the first command returned: double (Int)Unit. We defined a method
named double that takes an Int argument and returns Unit. The method doesn’t return
an Int as we would expect.

The cause of this unexpected behavior is a missing equals sign in the method definition.
Here is the definition we actually intended:

scala> def double(i: Int) = { 2 * i }
double: (Int)Int

scala> println(double(2))
4

Note the equals sign before the body of double. Now, the output says we have defined
double to return an Int and the second command does what we expect it to do.

There is a reason for this behavior. Scala regards a method with the equals sign before
the body as a function definition and a function always returns a value in functional
programming. On the other hand, when Scala sees a method body without the leading
equals sign, it assumes the programmer intended the method to be a “procedure”
definition, meant for performing side effects only with the return value Unit. In practice,
it is more likely that the programmer simply forgot to insert the equals sign!

Inferring Type Information | 35

When the return type of a method is inferred and you don’t use an equals
sign before the opening parenthesis for the method body, Scala infers a
Unit return type, even when the last expression in the method is a value
of another type.

By the way, where did that () come from that was printed before we fixed the bug? It
is actually the real name of the singleton instance of the Unit type! (This name is a
functional programming convention.)

Literals
Often, a new object is initialized with a literal value, such as val book = "Programming
Scala". Let’s discuss the kinds of literal values supported by Scala. Here, we’ll limit
ourselves to lexical syntax literals. We’ll cover literal syntax for functions (used as
values, not member methods), tuples, and certain types like Lists and Maps as we come
to them.

Integer Literals
Integer literals can be expressed in decimal, hexadecimal, or octal. The details are sum-
marized in Table 2-1.

Table 2-1. Integer literals

Kind Format Examples

Decimal 0 or a nonzero digit followed by zero or more digits (0–9) 0, 1, 321

Hexadecimal 0x followed by one or more hexadecimal digits (0–9, A–F, a–f) 0xFF, 0x1a3b

Octal 0 followed by one or more octal digits (0–7) 013, 077

For Long literals, it is necessary to append the L or l character at the end of the literal.
Otherwise, an Int is used. The valid values for an integer literal are bounded by the
type of the variable to which the value will be assigned. Table 2-2 defines the limits,
which are inclusive.

Table 2-2. Ranges of allowed values for integer literals (boundaries are inclusive)

Target type Minimum (inclusive) Maximum (inclusive)

Long −263 263 − 1

Int −231 231 − 1

Short −215 215 − 1

Char 0 216 − 1

Byte −27 27 − 1

36 | Chapter 2: Type Less, Do More

A compile-time error occurs if an integer literal number is specified that is outside these
ranges, as in the following examples:

scala > val i = 12345678901234567890
<console>:1: error: integer number too large
 val i = 12345678901234567890
scala> val b: Byte = 128
<console>:4: error: type mismatch;
 found : Int(128)
 required: Byte
 val b: Byte = 128
 ^

scala> val b: Byte = 127
b: Byte = 127

Floating-Point Literals
Floating-point literals are expressions with zero or more digits, followed by a period
(.), followed by zero or more digits. If there are no digits before the period, i.e., the
number is less than 1.0, then there must be one or more digits after the period. For
Float literals, append the F or f character at the end of the literal. Otherwise, a
Double is assumed. You can optionally append a D or d for a Double.

Floating-point literals can be expressed with or without exponentials. The format of
the exponential part is e or E, followed by an optional + or -, followed by one or more
digits.

Here are some example floating-point literals:

0.
.0
0.0
3.
3.14
.14
0.14
3e5
3E5
3.E5
3.e5
3.e+5
3.e-5
3.14e-5
3.14e-5f
3.14e-5F
3.14e-5d
3.14e-5D

Float consists of all IEEE 754 32-bit, single-precision binary floating-point values.
Double consists of all IEEE 754 64-bit, double-precision binary floating-point values.

Literals | 37

To avoid parsing ambiguities, you must have at least one space after a
floating-point literal, if it is followed by a token that starts with a letter.
Also, the expression 1.toString returns the integer value 1 as a string,
while 1. toString uses the operator notation to invoke toString on the
floating-point literal 1..

Boolean Literals
The boolean literals are true and false. The type of the variable to which they are
assigned will be inferred to be Boolean:

scala> val b1 = true
b1: Boolean = true

scala> val b2 = false
b2: Boolean = false

Character Literals
A character literal is either a printable Unicode character or an escape sequence, written
between single quotes. A character with a Unicode value between 0 and 255 may also
be represented by an octal escape, i.e., a backslash (\) followed by a sequence of up to
three octal characters. It is a compile-time error if a backslash character in a character
or string literal does not start a valid escape sequence.

Here are some examples:

'A'
'\u0041' // 'A' in Unicode
'\n'
'\012' // '\n' in octal
'\t'

The valid escape sequences are shown in Table 2-3.

Table 2-3. Character escape sequences

Sequence Unicode Meaning

\b \u0008 Backspace (BS)

\t \u0009 Horizontal tab (HT)

\n \u000a Line feed (LF)

\f \u000c Form feed (FF)

\r \u000d Carriage return (CR)

\" \u0022 Double quote (")

\’ \u0027 Single quote (’)

\\ \u0009 Backslash (\)

38 | Chapter 2: Type Less, Do More

String Literals
A string literal is a sequence of characters enclosed in double quotes or triples of double
quotes, i.e., """...""".

For string literals in double quotes, the allowed characters are the same as the character
literals. However, if a double quote " character appears in the string, it must be
“escaped” with a \ character. Here are some examples:

"Programming\nScala"
"He exclaimed, \"Scala is great!\""
"First\tSecond"

The string literals bounded by triples of double quotes are also called multi-line string
literals. These strings can cover several lines; the line feeds will be part of the string.
They can include any characters, including one or two double quotes together, but not
three together. They are useful for strings with \ characters that don’t form valid Uni-
code or escape sequences, like the valid sequences listed in Table 2-3. Regular expres-
sions are a typical example, which we’ll discuss in Chapter 3. However, if escape
sequences appear, they aren’t interpreted.

Here are three example strings:

"""Programming\nScala"""
"""He exclaimed, "Scala is great!" """
"""First line\n
Second line\t

Fourth line"""

Note that we had to add a space before the trailing """ in the second example to prevent
a parse error. Trying to escape the second " that ends the "Scala is great!" quote, i.e.,
"Scala is great!\", doesn’t work.

Copy and paste these strings into the scala interpreter. Do the same for the previous
string examples. How are they interpreted differently?

Symbol Literals
Scala supports symbols, which are interned strings, meaning that two symbols with the
same “name” (i.e., the same character sequence) will actually refer to the same object
in memory. Symbols are used less often in Scala than in some other languages, like
Ruby, Smalltalk, and Lisp. They are useful as map keys instead of strings.

A symbol literal is a single quote ('), followed by a letter, followed by zero or more
digits and letters. Note that an expression like '1 is invalid, because the compiler thinks
it is an incomplete character literal.

A symbol literal 'id is a shorthand for the expression scala.Symbol("id").

Literals | 39

If you want to create a symbol that contains whitespace, use e.g.,
scala.Symbol(" Programming Scala "). All the whitespace is preserved.

Tuples
How many times have you wanted to return two or more values from a method? In
many languages, like Java, you only have a few options, none of which is very appealing.
You could pass in parameters to the method that will be modified for all or some of the
“return” values, which is ugly. Or you could declare some small “structural” class that
holds the two or more values, then return an instance of that class.

Scala, supports tuples, a grouping of two or more items, usually created with the literal
syntax of a comma-separated list of the items inside parentheses, e.g., (x1, x2, ...).
The types of the xi elements are unrelated to each other; you can mix and match types.
These literal “groupings” are instantiated as scala.TupleN instances, where N is the
number of items in the tuple. The Scala API defines separate TupleN classes for N between
1 and 22, inclusive. Tuple instances are immutable, first-class values, so you can assign
them to variables, pass them as values, and return them from methods.

The following example demonstrates the use of tuples:

// code-examples/TypeLessDoMore/tuple-example-script.scala

def tupleator(x1: Any, x2: Any, x3: Any) = (x1, x2, x3)

val t = tupleator("Hello", 1, 2.3)
println("Print the whole tuple: " + t)
println("Print the first item: " + t._1)
println("Print the second item: " + t._2)
println("Print the third item: " + t._3)

val (t1, t2, t3) = tupleator("World", '!', 0x22)
println(t1 + " " + t2 + " " + t3)

Running this script with scala produces the following output:

Print the whole tuple: (Hello,1,2.3)
Print the first item: Hello
Print the second item: 1
Print the third item: 2.3
World ! 34

The tupleator method simply returns a “3-tuple” with the input arguments. The first
statement that uses this method assigns the returned tuple to a single variable t. The
next four statements print t in various ways. The first print statement calls
Tuple3.toString, which wraps parentheses around the item list. The following three
statements print each item in t separately. The expression t._N retrieves the N item,
starting at 1, not 0 (this choice follows functional programming conventions).

40 | Chapter 2: Type Less, Do More

The last two lines show that we can use a tuple expression on the lefthand side of the
assignment. We declare three vals—t1, t2, and t3—to hold the individual items in the
tuple. In essence, the tuple items are extracted automatically.

Notice how we mixed types in the tuples. You can see the types more clearly if you use
the interactive mode of the scala command, which we introduced in Chapter 1.

Invoke the scala command with no script argument. At the scala> prompt, enter
val t = ("Hello",1,2.3) and see that you get the following result, which shows you
the type of each element in the tuple:

scala> val t = ("Hello",1,2.3)
t: (java.lang.String, Int, Double) = (Hello,1,2.3)

It’s worth noting that there’s more than one way to define a tuple. We’ve been using
the more common parenthesized syntax, but you can also use the arrow operator be-
tween two values, as well as special factory methods on the tuple-related classes:

scala> 1 -> 2
res0: (Int, Int) = (1,2)

scala> Tuple2(1, 2)
res1: (Int, Int) = (1,2)

scala> Pair(1, 2)
res2: (Int, Int) = (1,2)

Option, Some, and None: Avoiding nulls
We’ll discuss the standard type hierarchy for Scala in “The Scala Type Hierar-
chy” on page 155. However, three useful classes to understand now are the Option
class and its two subclasses, Some and None.

Most languages have a special keyword or object that’s assigned to reference variables
when there’s nothing else for them to refer to. In Java, this is null; in Ruby, it’s nil. In
Java, null is a keyword, not an object, and thus it’s illegal to call any methods on it.
But this is a confusing choice on the language designer’s part. Why return a keyword
when the programmer expects an object?

To be more consistent with the goal of making everything an object, as well as to con-
form with functional programming conventions, Scala encourages you to use the
Option type for variables and function return values when they may or may not refer to
a value. When there is no value, use None, an object that is a subclass of Option. When
there is a value, use Some, which wraps the value. Some is also a subclass of Option.

None is declared as an object, not a class, because we really only need
one instance of it. In that sense, it’s like the null keyword, but it is a real
object with methods.

Option, Some, and None: Avoiding nulls | 41

You can see Option, Some, and None in action in the following example, where we create
a map of state capitals in the United States:

// code-examples/TypeLessDoMore/state-capitals-subset-script.scala

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 // ...
 "Wyoming" -> "Cheyenne")

println("Get the capitals wrapped in Options:")
println("Alabama: " + stateCapitals.get("Alabama"))
println("Wyoming: " + stateCapitals.get("Wyoming"))
println("Unknown: " + stateCapitals.get("Unknown"))

println("Get the capitals themselves out of the Options:")
println("Alabama: " + stateCapitals.get("Alabama").get)
println("Wyoming: " + stateCapitals.get("Wyoming").getOrElse("Oops!"))
println("Unknown: " + stateCapitals.get("Unknown").getOrElse("Oops2!"))

The convenient -> syntax for defining name-value pairs to initialize a Map will be dis-
cussed in “The Predef Object” on page 145. For now, we want to focus on the two
groups of println statements, where we show what happens when you retrieve the
values from the map. If you run this script with the scala command, you’ll get the
following output:

Get the capitals wrapped in Options:
Alabama: Some(Montgomery)
Wyoming: Some(Cheyenne)
Unknown: None
Get the capitals themselves out of the Options:
Alabama: Montgomery
Wyoming: Cheyenne
Unknown: Oops2!

The first group of println statements invoke toString implicitly on the instances re-
turned by get. We are calling toString on Some or None instances because the values
returned by Map.get are automatically wrapped in a Some, when there is a value in the
map for the specified key. Note that the Scala library doesn’t store the Some in the map;
it wraps the value in a Some upon retrieval. Conversely, when we ask for a map entry
that doesn’t exist, the None object is returned, rather than null. This occurred in the
last println of the three.

The second group of println statements goes a step further. After calling Map.get, they
call get or getOrElse on each Option instance to retrieve the value it contains.
Option.get requires that the Option is not empty—that is, the Option instance must
actually be a Some. In this case, get returns the value wrapped by the Some, as demon-
strated in the println where we print the capital of Alabama. However, if the Option
is actually None, then None.get throws a NoSuchElementException.

42 | Chapter 2: Type Less, Do More

We also show the alternative method, getOrElse, in the last two println statements.
This method returns either the value in the Option, if it is a Some instance, or it returns
the second argument we passed to getOrElse, if it is a None instance. In other words,
the second argument to getOrElse functions as the default return value.

So, getOrElse is the more defensive of the two methods. It avoids a potential thrown
exception. We’ll discuss the merits of alternatives like get versus getOrElse in “Excep-
tions and the Alternatives” on page 311.

Note that because the Map.get method returns an Option, it automatically documents
the fact that there may not be an item matching the specified key. The map handles
this situation by returning a None. Most languages would return null (or the equivalent)
when there is no “real” value to return. You learn from experience to expect a possible
null. Using Option makes the behavior more explicit in the method signature, so it’s
more self-documenting.

Also, thanks to Scala’s static typing, you can’t make the mistake of attempting to call
a method on a value that might actually be null. While this mistake is easy to do in
Java, it won’t compile in Scala because you must first extract the value from the
Option. So, the use of Option strongly encourages more resilient programming.

Because Scala runs on the JVM and .NET and because it must interoperate with other
libraries, Scala has to support null. Still, you should avoid using null in your code.
Tony Hoare, who invented the null reference in 1965 while working on an object-
oriented language called ALGOL W, called its invention his “billion dollar mistake”
(see [Hoare2009]). Don’t contribute to that figure.

So, how would you write a method that returns an Option? Here is a possible imple-
mentation of get that could be used by a concrete subclass of Map (Map.get itself is
abstract). For a more sophisticated version, see the implementation of get in
scala.collection.immutable.HashMap in the Scala library source code distribution:

def get(key: A): Option[B] = {
 if (contains(key))
 new Some(getValue(key))
 else
 None
}

The contains method is also defined for Map. It returns true if the map contains a value
for the specified key. The getValue method is intended to be an internal method that
retrieves the value from the underlying storage, whatever it is.

Note how the value returned by getValue is wrapped in a Some[B], where the type B is
inferred. However, if the call to contains(key) returns false, then the object None is
returned.

You can use this same idiom when your methods return an Option. We’ll explore other
uses for Option in subsequent sections. Its pervasive use in Scala code makes it an
important concept to grasp.

Option, Some, and None: Avoiding nulls | 43

Organizing Code in Files and Namespaces
Scala adopts the package concept that Java uses for namespaces, but Scala offers a more
flexible syntax. Just as file names don’t have to match the type names, the package
structure does not have to match the directory structure. So, you can define packages
in files independent of their “physical” location.

The following example defines a class MyClass in a package com.example.mypkg using
the conventional Java syntax:

// code-examples/TypeLessDoMore/package-example1.scala

package com.example.mypkg

class MyClass {
 // ...
}

The next example shows a contrived example that defines packages using the nested
package syntax in Scala, which is similar to the namespace syntax in C# and the use of
modules as namespaces in Ruby:

// code-examples/TypeLessDoMore/package-example2.scala

package com {
 package example {
 package pkg1 {
 class Class11 {
 def m = "m11"
 }
 class Class12 {
 def m = "m12"
 }
 }

 package pkg2 {
 class Class21 {
 def m = "m21"
 def makeClass11 = {
 new pkg1.Class11
 }
 def makeClass12 = {
 new pkg1.Class12
 }
 }
 }

 package pkg3.pkg31.pkg311 {
 class Class311 {
 def m = "m21"
 }
 }
 }
}

44 | Chapter 2: Type Less, Do More

Two packages, pkg1 and pkg2, are defined under the com.example package. A total
of three classes are defined between the two packages. The makeClass11 and
makeClass12 methods in Class21 illustrate how to reference a type in the “sibling”
package, pkg1. You can also reference these classes by their full paths,
com.example.pkg1.Class11 and com.example.pkg1.Class12, respectively.

The package pkg3.pkg31.pkg311 shows that you can “chain” several packages together
in one clause. It is not necessary to use a separate package clause for each package.

Following the conventions of Java, the root package for Scala’s library classes is named
scala.

Scala does not allow package declarations in scripts that are executed
directly with the scala interpreter. The reason has to do with the way
the interpreter converts statements in scripts to valid Scala code
before compiling to byte code. See “The scala Command-Line
Tool” on page 345 for more details.

Importing Types and Their Members
To use declarations in packages, you have to import them, just as you do in Java and
similarly for other languages. However, compared to Java, Scala greatly expands your
options. The following example illustrates several ways to import Java types:

// code-examples/TypeLessDoMore/import-example1.scala

import java.awt._
import java.io.File
import java.io.File._
import java.util.{Map, HashMap}

You can import all types in a package, using the underscore (_) as a wildcard, as shown
on the first line. You can also import individual Scala or Java types, as shown on the
second line.

Java uses the “star” character (*) as the wildcard for matching all types in a package or
all static members of a type when doing “static imports.” In Scala, this character is
allowed in method names, so _ is used as a wildcard, as we saw previously.

As shown on the third line, you can import all the static methods and fields in Java
types. If java.io.File were actually a Scala object, as discussed previously, then this
line would import the fields and methods from the object.

Finally, you can selectively import just the types you care about. On the fourth line, we
import just the java.util.Map and java.util.HashMap types from the java.util pack-
age. Compare this one-line import statement with the two-line import statements we
used in our first example in “Inferring Type Information” on page 29. They are
functionally equivalent.

Importing Types and Their Members | 45

The next example shows more advanced options for import statements:

// code-examples/TypeLessDoMore/import-example2-script.scala

def writeAboutBigInteger() = {

 import java.math.BigInteger.{
 ONE => _,
 TEN,
 ZERO => JAVAZERO }

 // ONE is effectively undefined
 // println("ONE: "+ONE)
 println("TEN: "+TEN)
 println("ZERO: "+JAVAZERO)
}

writeAboutBigInteger()

This example demonstrates two features. First, we can put import statements almost
anywhere we want, not just at the top of the file, as required by Java. This feature allows
us to scope the imports more narrowly. For example, we can’t reference the imported
BigInteger definitions outside the scope of the method. Another advantage of this fea-
ture is that it puts an import statement closer to where the imported items are actually
used.

The second feature shown is the ability to rename imported items. First, the
java.math.BigInteger.ONE constant is renamed to the underscore wildcard. This effec-
tively makes it invisible and unavailable to the importing scope. This is a useful tech-
nique when you want to import everything except a few particular items.

Next, the java.math.BigInteger.TEN constant is imported without renaming, so it can
be referenced simply as TEN.

Finally, the java.math.BigInteger.ZERO constant is given the “alias” JAVAZERO.

Aliasing is useful if you want to give the item a more convenient name or you want to
avoid ambiguities with other items in scope that have the same name.

Imports are Relative
There’s one other important thing to know about imports: they are relative. Note the
comments for the following imports:

// code-examples/TypeLessDoMore/relative-imports.scala
import scala.collection.mutable._
import collection.immutable._ // Since "scala" is already imported
import _root_.scala.collection.jcl._ // full path from real "root"
package scala.actors {
 import remote._ // We're in the scope of "scala.actors"
}

46 | Chapter 2: Type Less, Do More

Note that the last import statement nested in the scala.actor package scope is relative
to that scope.

The [ScalaWiki] has other examples at http://scala.sygneca.com/faqs/language#how-do
-i-import.

It’s fairly rare that you’ll have problems with relative imports, but the problem with
this convention is that they sometimes cause surprises, especially if you are accustomed
to languages like Java, where imports are absolute. If you get a mystifying compiler
error that a package wasn’t found, check that the statement is properly relative to the
last import statement or add the _root_. prefix. Also, you might see an IDE or other
tool insert an import _root_... statement in your code. Now you know what it means.

Remember that import statements are relative, not absolute. To create
an absolute path, start with _root_.

Abstract Types And Parameterized Types
We mentioned in “A Taste of Scala” on page 10 that Scala supports parameterized
types, which are very similar to generics in Java. (We could use the two terms inter-
changeably, but it’s more common to use “parameterized types” in the Scala com-
munity and “generics” in the Java community.) The most obvious difference is in the
syntax, where Scala uses square brackets ([...]), while Java uses angle brackets (<...>).

For example, a list of strings would be declared as follows:

val languages: List[String] = ...

There are other important differences with Java’s generics, which we’ll explore in
“Understanding Parameterized Types” on page 249.

For now, we’ll mention one other useful detail that you’ll encounter before we can
explain it in depth in Chapter 12. If you look at the declaration of scala.List in the
Scaladocs, you’ll see that the declaration is written as ... class List[+A]. The + in
front of the A means that List[B] is a subtype of List[A] for any B that is a subtype of
A. If there is a - in front of a type parameter, then the relationship goes the other way;
Foo[B] would be a supertype of Foo[A], if the declaration is Foo[-A].

Scala supports another type abstraction mechanism called abstract types, used in many
functional programming languages, such as Haskell. Abstract types were also consid-
ered for inclusion in Java when generics were adopted. We want to introduce them
now because you’ll see many examples of them before we dive into their details in
Chapter 12. For a very detailed comparison of these two mechanisms, see [Bruce1998].

Abstract types can be applied to many of the same design problems for which para-
meterized types are used. However, while the two mechanisms overlap, they are not
redundant. Each has strengths and weaknesses for certain design problems.

Abstract Types And Parameterized Types | 47

http://scala.sygneca.com/faqs/language#how-do-i-import
http://scala.sygneca.com/faqs/language#how-do-i-import

Here is an example that uses an abstract type:

// code-examples/TypeLessDoMore/abstract-types-script.scala

import java.io._

abstract class BulkReader {
 type In
 val source: In
 def read: String
}

class StringBulkReader(val source: String) extends BulkReader {
 type In = String
 def read = source
}

class FileBulkReader(val source: File) extends BulkReader {
 type In = File
 def read = {
 val in = new BufferedInputStream(new FileInputStream(source))
 val numBytes = in.available()
 val bytes = new Array[Byte](numBytes)
 in.read(bytes, 0, numBytes)
 new String(bytes)
 }
}

println(new StringBulkReader("Hello Scala!").read)
println(new FileBulkReader(new File("abstract-types-script.scala")).read)

Running this script with scala produces the following output:

Hello Scala!
import java.io._

abstract class BulkReader {
...

The BulkReader abstract class declares three abstract members: a type named In, a
val field source, and a read method. As in Java, instances in Scala can only be created
from concrete classes, which must have definitions for all members.

The derived classes, StringBulkReader and FileBulkReader, provide concrete defini-
tions for these abstract members. We’ll cover the details of class declarations in Chap-
ter 5 and the particulars of overriding member declarations in “Overriding Members
of Classes and Traits” on page 111 in Chapter 6.

For now, note that the type field works very much like a type parameter in a parame-
terized type. In fact, we could rewrite this example as follows, where we show only
what would be different:

abstract class BulkReader[In] {
 val source: In
 ...

48 | Chapter 2: Type Less, Do More

}

class StringBulkReader(val source: String) extends BulkReader[String] {...}

class FileBulkReader(val source: File) extends BulkReader[File] {...}

Just as for parameterized types, if we define the In type to be String, then the source
field must also be defined as a String. Note that the StringBulkReader’s read method
simply returns the source field, while the FileBulkReader’s read method reads the con-
tents of the file.

As demonstrated by [Bruce1998], parameterized types tend to be best for collections,
which is how they are most often used in Java code, whereas abstract types are most
useful for type “families” and other type scenarios.

We’ll explore the details of Scala’s abstract types in Chapter 12. For example, we’ll see
how to constrain the possible concrete types that can be used.

Reserved Words
Table 2-4 lists the reserved words in Scala, which we sometimes call “keywords,” and
briefly describes how they are used (see [ScalaSpec2009]).

Table 2-4. Reserved words

Word Description See …

abstract Makes a declaration abstract. Unlike Java, the keyword is usually
not required for abstract members.

“Class and Object Basics” on page 89

case Start a case clause in a match expression. “Pattern Matching” on page 63

catch Start a clause for catching thrown exceptions. “Using try, catch, and finally Clau-
ses” on page 70

class Start a class declaration. “Class and Object Basics” on page 89

def Start a method declaration. “Method Declarations” on page 25

do Start a do...while loop. “Other Looping Constructs”
on page 61

else Start an else clause for an if clause. “Scala if Statements” on page 58

extends Indicates that the class or trait that follows is the parent type of the
class or trait being declared.

“Parent Classes” on page 91

false Boolean false. “The Scala Type Hierarchy”
on page 155

final Applied to a class or trait to prohibit deriving child types from it.
Applied to a member to prohibit overriding it in a derived class or
trait.

“Attempting to Override final Declara-
tions” on page 112

finally Start a clause that is executed after the corresponding try clause,
whether or not an exception is thrown by the try clause.

“Using try, catch, and finally Clau-
ses” on page 70

Reserved Words | 49

Word Description See …

for Start a for comprehension (loop). “Scala for Comprehen-
sions” on page 59

forSome Used in existential type declarations to constrain the allowed
concrete types that can be used.

“Existential Types” on page 284

if Start an if clause. “Scala if Statements” on page 58

implicit Marks a method as eligible to be used as an implicit type converter.
Marks a method parameter as optional, as long as a type-
compatible substitute object is in the scope where the method is
called.

“Implicit Conversions” on page 186

import Import one or more types or members of types into the current
scope.

“Importing Types and Their Mem-
bers” on page 45

lazy Defer evaluation of a val. “Lazy Vals” on page 190

match Start a pattern matching clause. “Pattern Matching” on page 63

new Create a new instance of a class. “Class and Object Basics” on page 89

null Value of a reference variable that has not been assigned a value. “The Scala Type Hierarchy”
on page 155

object Start a singleton declaration: a class with only one instance. “Classes and Objects: Where Are the
Statics?” on page 148

override Override a concrete member of a class or trait, as long as the original
is not marked final.

“Overriding Members of Classes and
Traits” on page 111

package Start a package scope declaration. “Organizing Code in Files and Namespa-
ces” on page 44

private Restrict visibility of a declaration. “Visibility Rules” on page 96

protected Restrict visibility of a declaration. “Visibility Rules” on page 96

requires Deprecated. Was used for self typing. “The Scala Type Hierarchy”
on page 155

return Return from a function. “A Taste of Scala” on page 10

sealed Applied to a parent class to require all directly derived
classes to be declared in the same source file.

“Case Classes” on page 136

super Analogous to this, but binds to the parent type. “Overriding Abstract and Concrete
Methods” on page 112

this How an object refers to itself. The method name for auxiliary
constructors.

“Class and Object Basics” on page 89

throw Throw an exception. “Using try, catch, and finally Clau-
ses” on page 70

trait A mixin module that adds additional state and behavior to an
instance of a class.

Chapter 4

try Start a block that may throw an exception. “Using try, catch, and finally Clau-
ses” on page 70

50 | Chapter 2: Type Less, Do More

Word Description See …

true Boolean true. “The Scala Type Hierarchy”
on page 155

type Start a type declaration. “Abstract Types And Parameterized
Types” on page 47

val Start a read-only “variable” declaration. “Variable Declarations” on page 24

var Start a read-write variable declaration. “Variable Declarations” on page 24

while Start a while loop. “Other Looping Constructs”
on page 61

with Include the trait that follows in the class being declared or the object
being instantiated.

Chapter 4

yield Return an element in a for comprehension that becomes part of
a sequence.

“Yielding” on page 60

_ A placeholder, used in imports, function literals, etc. Many

: Separator between identifiers and type annotations. “A Taste of Scala” on page 10

= Assignment. “A Taste of Scala” on page 10

=> Used in function literals to separate the argument list from the
function body.

“Function Literals and Clo-
sures” on page 169

<- Used in for comprehensions in generator expressions. “Scala for Comprehen-
sions” on page 59

<: Used in parameterized and abstract type declarations to constrain
the allowed types.

“Type Bounds” on page 259

<% Used in parameterized and abstract type “view bounds”
declarations.

“Type Bounds” on page 259

>: Used in parameterized and abstract type declarations to constrain
the allowed types.

“Type Bounds” on page 259

Used in type projections. “Path-Dependent Types” on page 272

@ Marks an annotation. “Annotations” on page 289

⇒ (Unicode \u21D2) Same as =>. “Function Literals and Clo-
sures” on page 169

← (Unicode \u2190) Same as <-. “Scala for Comprehen-
sions” on page 59

Notice that break and continue are not listed. These control keywords don’t exist in
Scala. Instead, Scala encourages you to use functional programming idioms that are
usually more succinct and less error-prone. We’ll discuss alternative approaches when
we discuss for loops (see “Generator Expressions” on page 62).

Some Java methods use names that are reserved by Scala, for example,
java.util.Scanner.match. To avoid a compilation error, surround the name with single
back quotes, e.g., java.util.Scanner.‵match‵.

Reserved Words | 51

Recap and What’s Next
We covered several ways that Scala’s syntax is concise, flexible, and productive. We
also described many Scala features. In the next chapter, we will round out some Scala
essentials before we dive into Scala’s support for object-oriented programming and
functional programming.

52 | Chapter 2: Type Less, Do More

CHAPTER 3

Rounding Out the Essentials

Before we dive into Scala’s support for object-oriented and functional programming,
let’s finish our discussion of the essential features you’ll use in most of your programs.

Operator? Operator?
An important fundamental concept in Scala is that all operators are actually methods.
Consider this most basic of examples:

// code-examples/Rounding/one-plus-two-script.scala

1 + 2

That plus sign between the numbers? It’s a method. First, Scala allows non-
alphanumeric method names. You can call methods +, -, $, or whatever you desire.
Second, this expression is identical to 1 .+(2). (We put a space after the 1 because 1.
would be interpreted as a Double.) When a method takes one argument, Scala lets you
drop both the period and the parentheses, so the method invocation looks like an
operator invocation. This is called “infix” notation, where the operator is between the
instance and the argument. We’ll find out more about this shortly.

Similarly, a method with no arguments can be invoked without the period. This is called
“postfix” notation.

Ruby and Smalltalk programmers should now feel right at home. As users of those
languages know, these simple rules have far-reaching benefits when it comes to creating
programs that flow naturally and elegantly.

So, what characters can you use in identifiers? Here is a summary of the rules for iden-
tifiers, used for method and type names, variables, etc. For the precise details, see
[ScalaSpec2009]. Scala allows all the printable ASCII characters, such as letters, digits,
the underscore (_), and the dollar sign ($), with the exceptions of the “parenthetical”
characters—(,), [,], {, and }—and the “delimiter” characters—`, ’, ', ", ., ;, and ,.
Scala allows the other characters between \u0020–\u007F that are not in the sets just

53

shown, such as mathematical symbols and “other” symbols. These remaining charac-
ters are called operator characters, and they include characters such as /, <, etc.

Reserved words can’t be used
As in most languages, you can’t reuse reserved words for identifiers. We listed the
reserved words in “Reserved Words” on page 49. Recall that some of them are
combinations of operator and punctuation characters. For example, a single un-
derscore (_) is a reserved word!

Plain identifiers—combinations of letters, digits, $, _, and operators
Like Java and many languages, a plain identifier can begin with a letter or under-
score, followed by more letters, digits, underscores, and dollar signs. Unicode-
equivalent characters are also allowed. However, like Java, Scala reserves the dollar
sign for internal use, so you shouldn’t use it in your own identifiers. After an
underscore, you can have either letters and digits or a sequence of operator char-
acters. The underscore is important. It tells the compiler to treat all the characters
up to the next whitespace as part of the identifier. For example, val xyz_++= = 1
assigns the variable xyz_++= the value 1, while the expression val xyz++= = 1 won’t
compile because the “identifier” could also be interpreted as xyz ++=, which looks
like an attempt to append something to xyz. Similarly, if you have operator char-
acters after the underscore, you can’t mix them with letters and digits. This re-
striction prevents ambiguous expressions like this: abc_=123. Is that an identifier
abc_=123 or an assignment of the value 123 to abc_?

Plain identifiers—operators
If an identifier begins with an operator character, the rest of the characters must
be operator characters.

“Back-quote” literals
An identifier can also be an arbitrary string (subject to platform limitations) be-
tween two back quote characters, e.g., val ̀ this is a valid identifier` = "Hello
World!". Recall that this syntax is also the way to invoke a method on a Java or .NET
class when the method’s name is identical to a Scala reserved word, e.g.,
java.net.Proxy.‵type‵().

Pattern matching identifiers
In pattern matching expressions, tokens that begin with a lowercase letter are
parsed as variable identifiers, while tokens that begin with an uppercase letter are
parsed as constant identifiers. This restriction prevents some ambiguities because
of the very succinct variable syntax that is used, e.g., no val keyword is present.

Syntactic Sugar
Once you know that all operators are methods, it’s easier to reason about unfamiliar
Scala code. You don’t have to worry about special cases when you see new operators.
When working with Actors in “A Taste of Concurrency” on page 16, you may have
noticed that we used an exclamation point (!) to send a message to an Actor. Now you

54 | Chapter 3: Rounding Out the Essentials

know that the ! is just another method, as are the other handy shortcut operators you
can use to talk to Actors. Similarly, Scala’s XML library provides the \ and \\ operators
to dive into document structures. These are just methods on the scala.xml.NodeSeq
class.

This flexible method naming gives you the power to write libraries that feel like a natural
extension of Scala itself. You could write a new math library with numeric types that
accept all the usual mathematical operators, like addition and subtraction. You could
write a new concurrent messaging layer that behaves just like Actors. The possibilities
are constrained only by Scala’s method naming limitations.

Just because you can doesn’t mean you should. When designing your
own libraries and APIs in Scala, keep in mind that obscure punctuational
operators are hard for programmers to remember. Overuse of these can
contribute a “line noise” quality of unreadability to your code. Stick to
conventions and err on the side of spelling method names out when a
shortcut doesn’t come readily to mind.

Methods Without Parentheses and Dots
To facilitate a variety of readable programming styles, Scala is flexible about the use of
parentheses in methods. If a method takes no parameters, you can define it without
parentheses. Callers must invoke the method without parentheses. If you add empty
parentheses, then callers may optionally add parentheses. For example, the size
method for List has no parentheses, so you write List(1, 2, 3).size. If you try List(1,
2, 3).size(), you’ll get an error. However, the length method for java.lang.String
does have parentheses in its definition, but Scala lets you write both
"hello".length() and "hello".length.

The convention in the Scala community is to omit parentheses when calling a method
that has no side effects. So, asking for the size of a sequence is fine without parentheses,
but defining a method that transforms the elements in the sequence should be written
with parentheses. This convention signals a potentially tricky method for users of your
code.

It’s also possible to omit the dot (period) when calling a parameterless method or one
that takes only one argument. With this in mind, our List(1, 2, 3).size example
could be written as:

// code-examples/Rounding/no-dot-script.scala

List(1, 2, 3) size

Neat, but confusing. When does this syntactical flexibility become useful? When
chaining method calls together into expressive, self-explanatory “sentences” of code:

Methods Without Parentheses and Dots | 55

// code-examples/Rounding/no-dot-better-script.scala

def isEven(n: Int) = (n % 2) == 0

List(1, 2, 3, 4) filter isEven foreach println

As you might guess, running this produces the following output:

2
4

Scala’s liberal approach to parentheses and dots on methods provides one building
block for writing Domain-Specific Languages. We’ll learn more about them after a brief
discussion of operator precedence.

Precedence Rules
So, if an expression like 2.0 * 4.0 / 3.0 * 5.0 is actually a series of method calls on
Doubles, what are the operator precedence rules? Here they are in order from lowest to
highest precedence (see [ScalaSpec2009]):

1. All letters

2. |

3. ^

4. &

5. < >

6. = !

7. :

8. + -

9. * / %

10. All other special characters

Characters on the same line have the same precedence. An exception is = when used
for assignment, when it has the lowest precedence.

Since * and / have the same precedence, the two lines in the following scala session
behave the same:

scala> 2.0 * 4.0 / 3.0 * 5.0
res2: Double = 13.333333333333332

scala> (((2.0 * 4.0) / 3.0) * 5.0)
res3: Double = 13.333333333333332

In a sequence of left-associative method invocations, they simply bind in left-to-right
order. “Left-associative” you say? In Scala, any method with a name that ends with a
colon : actually binds to the right, while all other methods bind to the left. For example,

56 | Chapter 3: Rounding Out the Essentials

you can prepend an element to a List using the :: method (called “cons,” short for
“constructor”):

scala> val list = List('b', 'c', 'd')
list: List[Char] = List(b, c, d)

scala> 'a' :: list
res4: List[Char] = List(a, b, c, d)

The second expression is equivalent to list.::(a). In a sequence of right-associative
method invocations, they bind from right to left. What about a mixture of left-binding
and right-binding expressions?

scala> 'a' :: list ++ List('e', 'f')
res5: List[Char] = List(a, b, c, d, e, f)

(The ++ method appends two lists.) In this case, list is added to the List(e, f), then
a is prepended to create the final list. It’s usually better to add parentheses to remove
any potential uncertainty.

Any method whose name ends with a : binds to the right, not the left.

Finally, note that when you use the scala command, either interactively or with scripts,
it may appear that you can define “global” variables and methods outside of types. This
is actually an illusion; the interpreter wraps all definitions in an anonymous type before
generating JVM or .NET CLR byte code.

Domain-Specific Languages
Domain-Specific Languages, or DSLs, provide a convenient syntactical means for ex-
pressing goals in a given problem domain. For example, SQL provides just enough of
a programming language to handle the problems of working with databases, making
it a Domain-Specific Language.

While some DSLs like SQL are self-contained, it’s become popular to implement DSLs
as subsets of full-fledged programming languages. This allows programmers to leverage
the entirety of the host language for edge cases that the DSL does not cover, and saves
the work of writing lexers, parsers, and the other building blocks of a language.

Scala’s rich, flexible syntax makes writing DSLs a breeze. Consider this example of a
style of test writing called Behavior-Driven Development (see [BDD]) using the Specs
library (see “Specs” on page 363):

// code-examples/Rounding/specs-script.scala

"nerd finder" should {

Domain-Specific Languages | 57

 "identify nerds from a List" in {
 val actors = List("Rick Moranis", "James Dean", "Woody Allen")
 val finder = new NerdFinder(actors)
 finder.findNerds mustEqual List("Rick Moranis", "Woody Allen")
 }
}

Notice how much this code reads like English: “This should test that in the following
scenario,” “This value must equal that value,” and so forth. This example uses the
superb Specs library, which effectively provides a DSL for the Behavior-Driven Devel-
opment testing and engineering methodology. By making maximum use of Scala’s lib-
eral syntax and rich methods, Specs test suites are readable even by non-developers.

This is just a taste of the power of DSLs in Scala. We’ll see other examples later and
learn how to write our own as we get more advanced (see Chapter 11).

Scala if Statements
Even the most familiar language features are supercharged in Scala. Let’s have a look
at the lowly if statement. As in most every language, Scala’s if evaluates a conditional
expression, then proceeds to a block if the result is true, or branches to an alternate
block if the result is false. A simple example:

// code-examples/Rounding/if-script.scala

if (2 + 2 == 5) {
 println("Hello from 1984.")
} else if (2 + 2 == 3) {
 println("Hello from Remedial Math class?")
} else {
 println("Hello from a non-Orwellian future.")
}

What’s different in Scala is that if and almost all other statements are actually expres-
sions themselves. So, we can assign the result of an if expression, as shown here:

// code-examples/Rounding/assigned-if-script.scala

val configFile = new java.io.File("~/.myapprc")

val configFilePath = if (configFile.exists()) {
 configFile.getAbsolutePath()
} else {
 configFile.createNewFile()
 configFile.getAbsolutePath()
}

Note that if statements are expressions, meaning they have values. In this example,
the value configFilePath is the result of an if expression that handles the case of a
configuration file not existing internally, then returns the absolute path to that file. This
value can now be reused throughout an application, and the if expression won’t be
reevaluated when the value is used.

58 | Chapter 3: Rounding Out the Essentials

Because if statements are expressions in Scala, there is no need for the special-case
ternary conditional expressions that exist in C-derived languages. You won’t see x ?
doThis() : doThat() in Scala. Scala provides a mechanism that’s just as powerful and
more readable.

What if we omit the else clause in the previous example? Typing the code in the
scala interpreter will tell us what happens:

scala> val configFile = new java.io.File("~/.myapprc")
configFile: java.io.File = ~/.myapprc

scala> val configFilePath = if (configFile.exists()) {
 | configFile.getAbsolutePath()
 | }
configFilePath: Unit = ()

scala>

Note that configFilePath is now Unit. (It was String before.) The type inference picks
a type that works for all outcomes of the if expression. Unit is the only possibility, since
no value is one possible outcome.

Scala for Comprehensions
Another familiar control structure that’s particularly feature-rich in Scala is the for
loop, referred to in the Scala community as a for comprehension or for expression. This
corner of the language deserves at least one fancy name, because it can do some great
party tricks.

Actually, the term comprehension comes from functional programming. It expresses the
idea that we are traversing a set of some kind, “comprehending” what we find, and
computing something new from it.

A Dog-Simple Example
Let’s start with a basic for expression:

// code-examples/Rounding/basic-for-script.scala

val dogBreeds = List("Doberman", "Yorkshire Terrier", "Dachshund",
 "Scottish Terrier", "Great Dane", "Portuguese Water Dog")

for (breed <- dogBreeds)
 println(breed)

As you might guess, this code says, “For every element in the list dogBreeds, create a
temporary variable called breed with the value of that element, then print it.” Think of
the <- operator as an arrow directing elements of a collection, one by one, to the scoped
variable by which we’ll refer to them inside the for expression. The left-arrow operator

Scala for Comprehensions | 59

is called a generator, so named because it’s generating individual values from a collec-
tion for use in an expression.

Filtering
What if we want to get more granular? Scala’s for expressions allow for filters that let
us specify which elements of a collection we want to work with. So to find all terriers
in our list of dog breeds, we could modify the previous example to the following:

// code-examples/Rounding/filtered-for-script.scala

for (breed <- dogBreeds
 if breed.contains("Terrier")
) println(breed)

To add more than one filter to a for expression, separate the filters with semicolons:

// code-examples/Rounding/double-filtered-for-script.scala

for (breed <- dogBreeds
 if breed.contains("Terrier");
 if !breed.startsWith("Yorkshire")
) println(breed)

You’ve now found all the terriers that don’t hail from Yorkshire, and hopefully learned
just how useful filters can be in the process.

Yielding
What if, rather than printing your filtered collection, you needed to hand it off to
another part of your program? The yield keyword is your ticket to generating new
collections with for expressions. In the following example, note that we’re wrapping
up the for expression in curly braces, as we would when defining any block:

// code-examples/Rounding/yielding-for-script.scala

val filteredBreeds = for {
 breed <- dogBreeds
 if breed.contains("Terrier")
 if !breed.startsWith("Yorkshire")
} yield breed

for expressions may be defined with parentheses or curly braces, but
using curly braces means you don’t have to separate your filters with
semicolons. Most of the time, you’ll prefer using curly braces when you
have more than one filter, assignment, etc.

Every time through the for expression, the filtered result is yielded as a value named
breed. These results accumulate with every run, and the resulting collection is assigned
to the value filteredBreeds (as we did with if statements earlier). The type of the

60 | Chapter 3: Rounding Out the Essentials

collection resulting from a for-yield expression is inferred from the type of the collec-
tion being iterated over. In this case, filteredBreeds is of type List[String], since it is
a subset of the dogBreeds list, which is also of type List[String].

Expanded Scope
One final useful feature of Scala’s for comprehensions is the ability to define variables
inside the first part of your for expressions that can be used in the latter part. This is
best illustrated with an example:

// code-examples/Rounding/scoped-for-script.scala

for {
 breed <- dogBreeds
 upcasedBreed = breed.toUpperCase()
} println(upcasedBreed)

Note that without declaring upcasedBreed as a val, you can reuse it within the body of
your for expression. This approach is ideal for transforming elements in a collection
as you loop through them.

Finally, in “Options and for Comprehensions” on page 308, we’ll see how using
Options with for comprehensions can greatly reduce code size by eliminating unnec-
essary “null” and “missing” checks.

Other Looping Constructs
Scala provides several other looping constructs.

Scala while Loops
Familiar in many languages, the while loop executes a block of code as long as a con-
dition is true. For example, the following code prints out a complaint once a day until
the next Friday the 13th has arrived:

// code-examples/Rounding/while-script.scala
// WARNING: This script runs for a LOOOONG time!

import java.util.Calendar

def isFridayThirteen(cal: Calendar): Boolean = {
 val dayOfWeek = cal.get(Calendar.DAY_OF_WEEK)
 val dayOfMonth = cal.get(Calendar.DAY_OF_MONTH)

 // Scala returns the result of the last expression in a method
 (dayOfWeek == Calendar.FRIDAY) && (dayOfMonth == 13)
}

while (!isFridayThirteen(Calendar.getInstance())) {
 println("Today isn't Friday the 13th. Lame.")

Other Looping Constructs | 61

 // sleep for a day
 Thread.sleep(86400000)
}

Table 3-1 later in this chapter shows the conditional operators that work in while loops.

Scala do-while Loops
Like the while loop, a do-while loop executes some code while a conditional expression
is true. The only difference that a do-while checks to see if the condition is true after
running the block. To count up to 10, we could write this:

// code-examples/Rounding/do-while-script.scala

var count = 0

do {
 count += 1
 println(count)
} while (count < 10)

As it turns out, there’s a more elegant way to loop through collections in Scala, as we’ll
see in the next section.

Generator Expressions
Remember the arrow operator (<-) from the discussion about for loops? We can put
it to work here, too. Let’s clean up the do-while example just shown:

// code-examples/Rounding/generator-script.scala

for (i <- 1 to 10) println(i)

Yup, that’s all that’s necessary. This clean one-liner is possible because of Scala’s
RichInt class. An implicit conversion is invoked by the compiler to convert the 1, an
Int, into a RichInt. (We’ll discuss these conversions in “The Scala Type Hierar-
chy” on page 155 and in “Implicit Conversions” on page 186.) RichInt defines a to
method that takes another integer and returns an instance of Range.Inclusive. That is,
Inclusive is a nested class in the Range companion object (a concept we introduced
briefly in Chapter 1; see Chapter 6 for details). This subclass of the class Range inherits
a number of methods for working with sequences and iterable data structures, including
those necessary to use it in a for loop.

By the way, if you wanted to count from 1 up to but not including 10, you could use
until instead of to. For example: for (i <- 0 until 10).

This should paint a clearer picture of how Scala’s internal libraries compose to form
easy-to-use language constructs.

62 | Chapter 3: Rounding Out the Essentials

When working with loops in most languages, you can break out of a
loop or continue the iterations. Scala doesn’t have either of these state-
ments, but when writing idiomatic Scala code, they’re not necessary.
Use conditional expressions to test if a loop should continue, or make
use of recursion. Better yet, filter your collections ahead of time to elim-
inate complex conditions within your loops. However, because of de-
mand for it, Scala version 2.8 includes support for break, implemented
as a library method, rather than a built-in break keyword.

Conditional Operators
Scala borrows most of the conditional operators from Java and its predecessors. You’ll
find the ones listed in Table 3-1 in if statements, while loops, and everywhere else
conditions apply.

Table 3-1. Conditional operators

Operator Operation Description

&& and The values on the left and right of the operator are true. The righthand side is only evaluated
if the lefthand side is true.

|| or At least one of the values on the left or right is true. The righthand side is only evaluated if the
lefthand side is false.

> greater than The value on the left is greater than the value on the right.

>= greater than or
equals

The value on the left is greater than or equal to the value on the right.

< less than The value on the left is less than the value on the right.

<= less than or
equals

The value on the left is less than or equal to the value on the right.

== equals The value on the left is the same as the value on the right.

!= not equal The value on the left is not the same as the value on the right.

Note that && and || are “short-circuiting” operators. They stop evaluating expressions
as soon as the answer is known.

We’ll discuss object equality in more detail in “Equality of Objects” on page 142. For
example, we’ll see that == has a different meaning in Scala versus Java. Otherwise, these
operators should all be familiar, so let’s move on to something new and exciting.

Pattern Matching
An idea borrowed from functional languages, pattern matching is a powerful yet concise
way to make a programmatic choice between multiple conditions. Pattern matching is
the familiar case statement from your favorite C-like language, but on steroids. In the

Pattern Matching | 63

typical case statement you’re limited to matching against values of ordinal types, yield-
ing trivial expressions like this: “In the case that i is 5, print a message; in the case that
i is 6, exit the program.” With Scala’s pattern matching, your cases can include types,
wildcards, sequences, regular expressions, and even deep inspections of an object’s
variables.

A Simple Match
To begin with, let’s simulate flipping a coin by matching the value of a boolean:

// code-examples/Rounding/match-boolean-script.scala

val bools = List(true, false)

for (bool <- bools) {
 bool match {
 case true => println("heads")
 case false => println("tails")
 case _ => println("something other than heads or tails (yikes!)")
 }
}

It looks just like a C-style case statement, right? The only difference is the last case with
the underscore (_) wildcard. It matches anything not defined in the cases above it, so
it serves the same purpose as the default keyword in Java and C# switch statements.

Pattern matching is eager; the first match wins. So, if you try to put a case _ clause
before any other case clauses, the compiler will throw an “unreachable code” error on
the next clause, because nothing will get past the default clause!

Use case _ for the default, “catch-all” match.

What if we want to work with matches as variables?

Variables in Matches
In the following example, we assign the wildcard case to a variable called other
Number, then print it in the subsequent expression. If we generate a 7, we’ll extol that
number’s virtues. Otherwise, we’ll curse fate for making us suffer an unlucky number:

// code-examples/Rounding/match-variable-script.scala

import scala.util.Random

val randomInt = new Random().nextInt(10)

randomInt match {

64 | Chapter 3: Rounding Out the Essentials

 case 7 => println("lucky seven!")
 case otherNumber => println("boo, got boring ol' " + otherNumber)
}

Matching on Type
These simple examples don’t even begin to scratch the surface of Scala’s pattern match-
ing features. Let’s try matching based on type:

// code-examples/Rounding/match-type-script.scala

val sundries = List(23, "Hello", 8.5, 'q')

for (sundry <- sundries) {
 sundry match {
 case i: Int => println("got an Integer: " + i)
 case s: String => println("got a String: " + s)
 case f: Double => println("got a Double: " + f)
 case other => println("got something else: " + other)
 }
}

Here we pull each element out of a List of Any type of element, in this case containing
a String, a Double, an Int, and a Char. For the first three of those types, we let the user
know specifically which type we got and what the value was. When we get something
else (the Char), we just let the user know the value. We could add further elements to
the list of other types and they’d be caught by the other wildcard case.

Matching on Sequences
Since working in Scala often means working with sequences, wouldn’t it be handy to
be able to match against the length and contents of lists and arrays? The following
example does just that, testing two lists to see if they contain four elements, the second
of which is the integer 3:

// code-examples/Rounding/match-seq-script.scala

val willWork = List(1, 3, 23, 90)
val willNotWork = List(4, 18, 52)
val empty = List()

for (l <- List(willWork, willNotWork, empty)) {
 l match {
 case List(_, 3, _, _) => println("Four elements, with the 2nd being '3'.")
 case List(_*) => println("Any other list with 0 or more elements.")
 }
}

In the second case we’ve used a special wildcard pattern to match a List of any size,
even zero elements, and any element values. You can use this pattern at the end of any
sequence match to remove length as a condition.

Pattern Matching | 65

Recall that we mentioned the “cons” method for List, ::. The expression a :: list
prepends a to a list. You can also use this operator to extract the head and tail of a list:

// code-examples/Rounding/match-list-script.scala

val willWork = List(1, 3, 23, 90)
val willNotWork = List(4, 18, 52)
val empty = List()

def processList(l: List[Any]): Unit = l match {
 case head :: tail =>
 format("%s ", head)
 processList(tail)
 case Nil => println("")
}

for (l <- List(willWork, willNotWork, empty)) {
 print("List: ")
 processList(l)
}

The processList method matches on the List argument l. It may look strange to start
the method definition like the following:

def processList(l: List[Any]): Unit = l match {
 ...
}

Hopefully hiding the details with the ellipsis makes the meaning a little clearer. The
processList method is actually one statement that crosses several lines.

It first matches on head :: tail, where head will be assigned the first element in the
list and tail will be assigned the rest of the list. That is, we’re extracting the head and
tail from the list using ::. When this case matches, it prints the head and calls process
List recursively to process the tail.

The second case matches the empty list, Nil. It prints an end of line and terminates the
recursion.

Matching on Tuples (and Guards)
Alternately, if we just wanted to test that we have a tuple of two items, we could do a
tuple match:

// code-examples/Rounding/match-tuple-script.scala

val tupA = ("Good", "Morning!")
val tupB = ("Guten", "Tag!")

for (tup <- List(tupA, tupB)) {
 tup match {
 case (thingOne, thingTwo) if thingOne == "Good" =>
 println("A two-tuple starting with 'Good'.")
 case (thingOne, thingTwo) =>

66 | Chapter 3: Rounding Out the Essentials

 println("This has two things: " + thingOne + " and " + thingTwo)
 }
}

In the second case in this example, we’ve extracted the values inside the tuple to scoped
variables, then reused these variables in the resulting expression.

In the first case we’ve added a new concept: guards. The if condition after the tuple is
a guard. The guard is evaluated when matching, but only extracting any variables in
the preceding part of the case. Guards provide additional granularity when constructing
cases. In this example, the only difference between the two patterns is the guard ex-
pression, but that’s enough for the compiler to differentiate them.

Recall that the cases in a pattern match are evaluated in order. For ex-
ample, if your first case is broader than your second case, the second
case will never be reached. (Unreachable cases will cause a compiler
error.) You may include a “default” case at the end of a pattern match,
either using the underscore wildcard character or a meaningfully named
variable. When using a variable, it should have no explicit type or it
should be declared as Any, so it can match anything. On the other hand,
try to design your code to avoid a catch-all clause by ensuring it only
receives specific items that are expected.

Matching on Case Classes
Let’s try a deep match, examining the contents of objects in our pattern match:

// code-examples/Rounding/match-deep-script.scala

case class Person(name: String, age: Int)

val alice = new Person("Alice", 25)
val bob = new Person("Bob", 32)
val charlie = new Person("Charlie", 32)

for (person <- List(alice, bob, charlie)) {
 person match {
 case Person("Alice", 25) => println("Hi Alice!")
 case Person("Bob", 32) => println("Hi Bob!")
 case Person(name, age) =>
 println("Who are you, " + age + " year-old person named " + name + "?")
 }
}

Poor Charlie gets the cold shoulder, as we can see in the output:

Hi Alice!
Hi Bob!
Who are you, 32 year-old person named Charlie?

Pattern Matching | 67

We first define a case class, a special type of class that we’ll learn more about in “Case
Classes” on page 136. For now, it will suffice to say that a case class allows for very
terse construction of simple objects with some predefined methods. Our pattern match
then looks for Alice and Bob by inspecting the values passed to the constructor of the
Person case class. Charlie falls through to the catch-all case; even though he has the
same age value as Bob, we’re matching on the name property as well.

This type of pattern match becomes extremely useful when working with Actors, as
we’ll see later on. Case classes are frequently sent to Actors as messages, and deep
pattern matching on an object’s contents is a convenient way to “parse” those messages.

Matching on Regular Expressions
Regular expressions are convenient for extracting data from strings that have an infor-
mal structure, but are not “structured data” (that is, in a format like XML or JSON, for
example). Commonly referred to as regexes, regular expressions are a feature of nearly
all modern programming languages. They provide a terse syntax for specifying complex
matches, one that is typically translated into a state machine behind the scenes for
optimum performance.

Regexes in Scala should contain no surprises if you’ve used them in other programming
languages. Let’s see an example:

// code-examples/Rounding/match-regex-script.scala

val BookExtractorRE = """Book: title=([^,]+),\s+authors=(.+)""".r
val MagazineExtractorRE = """Magazine: title=([^,]+),\s+issue=(.+)""".r

val catalog = List(
 "Book: title=Programming Scala, authors=Dean Wampler, Alex Payne",
 "Magazine: title=The New Yorker, issue=January 2009",
 "Book: title=War and Peace, authors=Leo Tolstoy",
 "Magazine: title=The Atlantic, issue=February 2009",
 "BadData: text=Who put this here??"
)

for (item <- catalog) {
 item match {
 case BookExtractorRE(title, authors) =>
 println("Book \"" + title + "\", written by " + authors)
 case MagazineExtractorRE(title, issue) =>
 println("Magazine \"" + title + "\", issue " + issue)
 case entry => println("Unrecognized entry: " + entry)
 }
}

We start with two regular expressions, one for records of books and another for records
of magazines. Calling .r on a string turns it into a regular expression; we use raw (triple-
quoted) strings here to avoid having to double-escape backslashes. Should you find

68 | Chapter 3: Rounding Out the Essentials

the .r transformation method on strings unclear, you can also define regexes by creating
new instances of the Regex class, as in: new Regex("""\W""").

Notice that each of our regexes defines two capture groups, connoted by parentheses.
Each group captures the value of a single field in the record, such as a book’s title or
author. Regexes in Scala translate those capture groups to extractors. Every match sets
a field to the captured result; every miss is set to null.

What does this mean in practice? If the text fed to the regular expression matches,
case BookExtractorRE(title, authors) will assign the first capture group to title and
the second to authors. We can then use those values on the righthand side of the
case clause, as we have in the previous example. The variable names title and
author within the extractor are arbitrary; matches from capture groups are simply
assigned from left to right, and you can call them whatever you’d like.

That’s regexes in Scala in nutshell. The scala.util.matching.Regex class supplies sev-
eral handy methods for finding and replacing matches in strings, both all occurrences
of a match and just the first occurrence, so be sure to make use of them.

What we won’t cover in this section is the details of writing regular expressions. Scala’s
Regex class uses the underlying platform’s regular expression APIs (that is, Java’s
or .NET’s). Consult references on those APIs for the hairy details, as they may be subtly
different from the regex support in your language of choice.

Binding Nested Variables in Case Clauses
Sometimes you want to bind a variable to an object enclosed in a match, where you are
also specifying match criteria on the nested object. Suppose we modify a previous ex-
ample so we’re matching on the key-value pairs from a map. We’ll store our same
Person objects as the values and use an employee ID as the key. We’ll also add another
attribute to Person, a role field that points to an instance from a type hierarchy:

// code-examples/Rounding/match-deep-pair-script.scala

class Role
case object Manager extends Role
case object Developer extends Role

case class Person(name: String, age: Int, role: Role)

val alice = new Person("Alice", 25, Developer)
val bob = new Person("Bob", 32, Manager)
val charlie = new Person("Charlie", 32, Developer)

for (item <- Map(1 -> alice, 2 -> bob, 3 -> charlie)) {
 item match {
 case (id, p @ Person(_, _, Manager)) => format("%s is overpaid.\n", p)
 case (id, p @ Person(_, _, _)) => format("%s is underpaid.\n", p)
 }
}

Pattern Matching | 69

The case objects are just singleton objects like we’ve seen before, but with the special
case behavior. We’re most interested in the embedded p @ Person(...) inside the case
clause. We’re matching on particular kinds of Person objects inside the enclosing tuple.
We also want to assign the Person to a variable p, so we can use it for printing:

Person(Alice,25,Developer) is underpaid.
Person(Bob,32,Manager) is overpaid.
Person(Charlie,32,Developer) is underpaid.

If we weren’t using matching criteria in Person itself, we could just write p: Person. For
example, the previous match clause could be written this way:

item match {
 case (id, p: Person) => p.role match {
 case Manager => format("%s is overpaid.\n", p)
 case _ => format("%s is underpaid.\n", p)
 }
}

Note that the p @ Person(...) syntax gives us a way to flatten this nesting of match
statements into one statement. It is analogous to using “capture groups” in a regular
expression to pull out substrings we want, instead of splitting the string in several
successive steps to extract the substrings we want. Use whichever technique you prefer.

Using try, catch, and finally Clauses
Through its use of functional constructs and strong typing, Scala encourages a coding
style that lessens the need for exceptions and exception handling. But where Scala
interacts with Java, exceptions are still prevalent.

Scala does not have checked exceptions, like Java. Even Java’s checked
exceptions are treated as unchecked by Scala. There is also no throws
clause on method declarations. However, there is a @throws annotation
that is useful for Java interoperability. See the section “Annota-
tions” on page 289.

Thankfully, Scala treats exception handling as just another pattern match, allowing us
to make smart choices when presented with a multiplicity of potential exceptions. Let’s
see this in action:

// code-examples/Rounding/try-catch-script.scala

import java.util.Calendar

val then = null
val now = Calendar.getInstance()

try {
 now.compareTo(then)
} catch {

70 | Chapter 3: Rounding Out the Essentials

 case e: NullPointerException => println("One was null!"); System.exit(-1)
 case unknown => println("Unknown exception " + unknown); System.exit(-1)
} finally {
 println("It all worked out.")
 System.exit(0)
}

In this example, we explicitly catch the NullPointerException thrown when trying to
compare a Calendar instance with null. We also define unknown as a catch-all case, just
to be safe. If we weren’t hardcoding this program to fail, the finally block would be
reached and the user would be informed that everything worked out just fine.

You can use an underscore (Scala’s standard wildcard character) as a
placeholder to catch any type of exception (really, to match any case in
a pattern matching expression). However, you won’t be able to refer to
the exception in the subsequent expression. Name the exception vari-
able if you need it; for example, if you need to print the exception as we
do in the catch-all case of the previous example.

Pattern matching aside, Scala’s treatment of exception handling should be familiar to
those fluent in Java, Ruby, Python, and most other mainstream languages. And yes,
you throw an exception by writing throw new MyBadException(...). That’s all there is
to it.

Concluding Remarks on Pattern Matching
Pattern matching is a powerful and elegant way of extracting information from objects,
when used appropriately. Recall from Chapter 1 that we highlighted the synergy be-
tween pattern matching and polymorphism. Most of the time, you want to avoid the
problems of “switch” statements that know a class hierarchy, because they have to be
modified every time the hierarchy is changed.

In our drawing Actor example, we used pattern matching to separate different “cate-
gories” of messages, but we used polymorphism to draw the shapes sent to it. We could
change the Shape hierarchy and the Actor code would not require changes.

Pattern matching is also useful for the design problem where you need to get at data
inside an object, but only in special circumstances. One of the unintended consequen-
ces of the JavaBeans (see [JavaBeansSpec]) specification was that it encouraged people
to expose fields in their objects through getters and setters. This should never be a
default decision. Access to “state information” should be encapsulated and exposed
only in ways that make logical sense for the type, as viewed from the abstraction it
exposes.

Instead, consider using pattern matching for those “rare” times when you need to ex-
tract information in a controlled way. As we will see in “Unapply” on page 129, the
pattern matching examples we have shown use unapply methods defined to extract

Pattern Matching | 71

information from instances. These methods let you extract that information while hid-
ing the implementation details. In fact, the information returned by unapply might be
a transformation of the actual information in the type.

Finally, when designing pattern matching statements, be wary of relying on a default
case clause. Under what circumstances would “none of the above” be the correct an-
swer? It may indicate that the design should be refined so you know more precisely all
the possible matches that might occur. We’ll learn one technique that helps when we
discuss sealed class hierarchies in “Sealed Class Hierarchies” on page 151.

Enumerations
Remember our examples involving various breeds of dog? In thinking about the types
in these programs, we might want a top-level Breed type that keeps track of a number
of breeds. Such a type is called an enumerated type, and the values it contains are called
enumerations.

While enumerations are a built-in part of many programming languages, Scala takes a
different route and implements them as a class in its standard library. This means there
is no special syntax for enumerations in Scala, as in Java and C#. Instead, you just
define an object that extends the Enumeration class. Hence, at the byte code level, there
is no connection between Scala enumerations and the enum constructs in Java and C#.

Here is an example:

// code-examples/Rounding/enumeration-script.scala

object Breed extends Enumeration {
 val doberman = Value("Doberman Pinscher")
 val yorkie = Value("Yorkshire Terrier")
 val scottie = Value("Scottish Terrier")
 val dane = Value("Great Dane")
 val portie = Value("Portuguese Water Dog")
}

// print a list of breeds and their IDs
println("ID\tBreed")
for (breed <- Breed) println(breed.id + "\t" + breed)

// print a list of Terrier breeds
println("\nJust Terriers:")
Breed.filter(_.toString.endsWith("Terrier")).foreach(println)

When run, you’ll get the following output:

ID Breed
0 Doberman Pinscher
1 Yorkshire Terrier
2 Scottish Terrier
3 Great Dane
4 Portuguese Water Dog

72 | Chapter 3: Rounding Out the Essentials

Just Terriers:
Yorkshire Terrier
Scottish Terrier

We can see that our Breed enumerated type contains several variables of type Value, as
in the following example:

val doberman = Value("Doberman Pinscher")

Each declaration is actually calling a method named Value that takes a string argument.
We use this method to assign a long-form breed name to each enumeration value, which
is what the Value.toString method returned in the output.

Note that there is no namespace collision between the type and method that both have
the name Value. There are other overloaded versions of the Value method. One of them
takes no arguments, another takes an Int ID value, and another takes both an Int and
String. These Value methods return a Value object, and they add the value to the enu-
meration’s collection of values.

In fact, Scala’s Enumeration class supports the usual methods for working with collec-
tions, so we can easily iterate through the breeds with a for loop and filter them by
name. The output above also demonstrated that every Value in an enumeration is au-
tomatically assigned a numeric identifier, unless you call one of the Value methods
where you specify your own ID value explicitly.

You’ll often want to give your enumeration values human-readable names, as we did
here. However, sometimes you may not need them. Here’s another enumeration ex-
ample adapted from the Scaladoc entry for Enumeration:

// code-examples/Rounding/days-enumeration-script.scala

object WeekDay extends Enumeration {
 type WeekDay = Value
 val Mon, Tue, Wed, Thu, Fri, Sat, Sun = Value
}
import WeekDay._

def isWorkingDay(d: WeekDay) = ! (d == Sat || d == Sun)

WeekDay filter isWorkingDay foreach println

Running this script with scala yields the following output:

Main$$anon1WeekDay(0)
Main$$anon1WeekDay(1)
Main$$anon1WeekDay(2)
Main$$anon1WeekDay(3)
Main$$anon1WeekDay(4)

When a name isn’t assigned using one of the Value methods that takes a String argu-
ment, Value.toString prints the name of the type that is synthesized by the compiler,
along with the ID value that was generated automatically.

Enumerations | 73

Note that we imported WeekDay._. This made each enumeration value (Mon, Tues, etc.)
in scope. Otherwise, you would have to write WeekDay.Mon, WeekDay.Tues, etc.

Also, the import made the type alias, type Weekday = Value, in scope, which we used
as the type for the argument for the isWorkingDay method. If you don’t define a type
alias like this, then you would declare the method as def isWorkingDay(d: Week
Day.Value).

Since Scala enumerations are just regular objects, you could use any object with vals
to indicate different “enumeration values.” However, extending Enumeration has sev-
eral advantages. It automatically manages the values as a collection that you can iterate
over, etc., as in our examples. It also automatically assigns unique integer IDs to each
value.

Case classes (see “Case Classes” on page 136) are often used instead of enumerations
in Scala because the “use case” for them often involves pattern matching. We’ll revisit
this topic in “Enumerations Versus Pattern Matching” on page 300.

Recap and What’s Next
We’ve covered a lot of ground in this chapter. We learned how flexible Scala’s syntax
can be, and how it facilitates the creation of Domain-Specific Languages. Then we
explored Scala’s enhancements to looping constructs and conditional expressions. We
experimented with different uses for pattern matching, a powerful improvement on the
familiar case-switch statement. Finally, we learned how to encapsulate values in
enumerations.

You should now be prepared to read a fair bit of Scala code, but there’s plenty more
about the language to put in your tool belt. In the next four chapters, we’ll explore
Scala’s approach to object-oriented programming, starting with traits.

74 | Chapter 3: Rounding Out the Essentials

CHAPTER 4

Traits

Introducing Traits
Before we dive into object-oriented programming, there’s one more essential feature of
Scala that you should get acquainted with: traits. Understanding the value of this feature
requires a little backstory.

In Java, a class can implement an arbitrary number of interfaces. This model is very
useful for declaring that a class exposes multiple abstractions. Unfortunately, it has one
major drawback.

For many interfaces, much of the functionality can be implemented with boilerplate
code that will be valid for all classes that use the interface. Java provides no built-in
mechanism for defining and using such reusable code. Instead, Java programmers must
use ad hoc conventions to reuse implementation code for a given interface. In the worst
case, the developer just copies and pastes the same code into every class that needs it.

Often, the implementation of an interface has members that are unrelated (“orthogo-
nal”) to the rest of the instance’s members. The term mixin is often used for such focused
and potentially reusable parts of an instance that could be independently maintained.

Have a look at the following code for a button in a graphical user interface, which uses
callbacks for “clicks”:

// code-examples/Traits/ui/button-callbacks.scala

package ui

class ButtonWithCallbacks(val label: String,
 val clickedCallbacks: List[() => Unit]) extends Widget {

 require(clickedCallbacks != null, "Callback list can't be null!")

 def this(label: String, clickedCallback: () => Unit) =
 this(label, List(clickedCallback))

 def this(label: String) = {

75

 this(label, Nil)
 println("Warning: button has no click callbacks!")
 }

 def click() = {
 // ... logic to give the appearance of clicking a physical button ...
 clickedCallbacks.foreach(f => f())
 }
}

There’s a lot going on here. The primary constructor takes a label argument and a list
of callbacks that are invoked when the button’s click method is invoked. We’ll explore
this class in greater detail in Chapter 5. For now, we want to focus on one particular
problem. Not only does ButtonWithCallbacks handle behaviors essential to buttons
(like clicking), it also handles notification of click events by invoking the callback func-
tions. This goes against the Single Responsibility Principle (see [Martin2003]), a means
to the design goal of separation of concerns. We would like to separate the button-
specific logic from the callback logic, such that each logical component becomes sim-
pler, more modular, and more reusable. The callback logic is a good example of a mixin.

This separation is difficult to do in Java, even if we define an interface for the callback
behavior. We still have to embed the implementation code in the class somehow,
compromising modularity. The only other alternative is to use a specialized tool like
aspect-oriented programming (AOP; see [AOSD]), as implemented by AspectJ (see
[AspectJ]), an extension of Java. AOP is primarily designed to separate the implemen-
tations of “pervasive” concerns that are repeated throughout an application. It seeks
to modularize these concerns, yet enable the fine-grained “mixing” of their behaviors
with other concerns, including the core domain logic of the application, either at build
or runtime.

Traits As Mixins
Scala provides a complete mixin solution, called traits. In our example, we can define
the callback abstraction in a trait, as in a Java interface, but we can also implement the
abstraction in the trait (or a derived trait). We can declare classes that “mix in” the
trait, much the way you can declare classes that implement an interface in Java. How-
ever, in Scala we can even mix in traits at the same time we create instances. That is,
we don’t have to declare a class first that mixes in all the traits we want. So, Scala traits
preserve separation of concerns while giving us the ability to compose behavior on
demand.

If you come from a Java background, you can think of traits as interfaces with optional
implementations. Or, if you prefer, you can think of traits as a “constrained” form of
multiple inheritance. Other languages provide constructs that are similar to traits, such
as modules in Ruby, for example.

Let’s use a trait to separate the callback handling from the button logic. We’ll generalize
our approach a little bit. Callbacks are really a special case of the Observer Pattern (see

76 | Chapter 4: Traits

[GOF1995]). So, let’s create a trait that implements this pattern, and then use it to
handle callback behavior. To simplify things, we’ll start with a single callback that
counts the number of button clicks.

First, let’s define a simple Button class:

// code-examples/Traits/ui/button.scala

package ui

class Button(val label: String) extends Widget {
 def click() = {
 // Logic to give the appearance of clicking a button...
 }
}

Here is the parent class, Widget:

// code-examples/Traits/ui/widget.scala

package ui

abstract class Widget

The logic for managing callbacks (i.e., the clickedCallbacks list) is omitted, as are the
two auxiliary constructors. Only the button’s label field and click method remain.
The click method now only cares about the visual appearance of a “physical” button
being clicked. Button has only one concern, handling the “essence” of being a button.

Here is a trait that implements the logic of the Observer Pattern:

// code-examples/Traits/observer/observer.scala

package observer

trait Subject {
 type Observer = { def receiveUpdate(subject: Any) }

 private var observers = List[Observer]()
 def addObserver(observer:Observer) = observers ::= observer
 def notifyObservers = observers foreach (_.receiveUpdate(this))
}

Except for the trait keyword, Subject looks like a normal class. Subject defines all the
members it declares. Traits can declare abstract members, concrete members, or both,
just as classes can (see “Overriding Members of Classes and Traits” on page 111 for
more details). Also like classes, traits can contain nested trait and class definitions, and
classes can contain nested trait definitions.

The first line defines a type for an Observer. This is a structural type of the form
{ def receiveUpdate(subject:Any) }. Structural types specify only the structure a type
must support; you could think of them as “anonymous” types.

Introducing Traits | 77

In this case, the structural type is defined by a method with a particular signature. Any
type that has a method with this signature can be used as an observer. We’ll learn more
about structural types in Chapter 12. If you’re wondering why we didn’t use Subject
as the type of the argument, instead of Any, we’ll revisit that issue in “Self-Type Anno-
tations and Abstract Type Members” on page 317.

The main thing to notice for now is how this structural type minimizes the coupling
between the Subject trait and any potential users of the trait.

Subject is still coupled by the name of the method in Observer through
the structural type, i.e., to a method named receiveUpdate. There are
several ways we can reduce this remaining coupling. We’ll see how in
“Overriding Abstract Types” on page 120.

Next, we declare a list of observers. We make it a var, rather than a val, because List
is immutable, so we must create a new list when an observer is added using the
addObserver method.

We’ll discuss Scala Lists more in “The Scala Type Hierarchy” on page 155 and also
in Chapter 8. For now, notice that addObserver uses the list cons “operator” method
(::) to prepend an observer to the list of observers. The scala compiler is smart enough
to turn the following statement:

observers ::= observer

into this statement:

observers = observer :: observers

Note that we wrote observer :: observers, with the existing observers list on the
righthand side. Recall that any method that ends with : binds to the right. So, the
previous statement is equivalent to the following statement:

observers = observers.::(observer)

The notifyObservers method iterates through the observers, using the foreach method
and calls receiveUpdate on each one. (Note that we are using the “infix” operator no-
tation instead of observers.foreach.) We use the placeholder _ to shorten the following
expression:

(obs) => obs.receiveUpdate(this)

into this expression:

_.receiveUpdate(this)

This expression is actually the body of an “anonymous function,” called a function
literal in Scala. This is similar to a lambda and like constructs used in many other
languages. Function literals and the related concept of a closure are discussed in
“Function Literals and Closures” on page 169.

78 | Chapter 4: Traits

In Java, the foreach method would probably take an interface, and you would pass an
instance of a class that implements the interface (e.g., the way Comparable is typically
used).

In Scala, the List[A].foreach method expects an argument of type (A) => Unit, which
is a function taking an instance of type A—where A represents the type of the elements
of the list (Observer, in this case)—and returning Unit (like void in Java).

We chose to use a var with immutable Lists for the observers in this
example. We could have used a val with a mutable type, like
ListBuffer. That choice would make a little more sense for a real
application, but we wanted to avoid the distraction of explaining new
library classes.

Once again, we learned a lot of Scala from a small example. Now let’s put our
Subject trait to use. Here is ObservableButton, which subclasses Button and mixes in
Subject:

// code-examples/Traits/ui/observable-button.scala

package ui
import observer._

class ObservableButton(name: String) extends Button(name) with Subject {
 override def click() = {
 super.click()
 notifyObservers
 }
}

We start by importing everything in the observer package, using the _ wildcard.
Actually, we have only defined the Subject trait in the package.

The new class uses the with keyword to add the Subject trait to the class. Observable
Button overrides the click method. Using the super keyword (see “Overriding Abstract
and Concrete Methods” on page 112), it first invokes the “superclass” method,
Button.click, and then it notifies the observers. Since the new click method overrides
Button’s concrete implementation, the override keyword is required.

The with keyword is analogous to Java’s implements keyword for interfaces. You can
specify as many traits as you want, each with its own with keyword.

A class can extend a trait, and a trait can extend a class. In fact, our Widget class earlier
could have been declared to be a trait.

If you declare a class that uses one or more traits and it doesn’t extend
another class, you must use the extends keyword for the first trait listed.

Introducing Traits | 79

If you don’t use extends for the first trait, e.g., you write the following:

// ERROR:
class ObservableButton(name: String) with Button(name) with Subject {...}

You’ll get an error like this:

... error: ';' expected but 'with' found.
 class ObservableButton(name: String) with Button(name) with Subject {...}
 ^

The error should really say, “with found, but extends expected.”

To demonstrate this code, let’s start with a class for observing button clicks that simply
counts the number of clicks:

// code-examples/Traits/ui/button-count-observer.scala

package ui
import observer._

class ButtonCountObserver {
 var count = 0
 def receiveUpdate(subject: Any) = count += 1
}

Finally, let’s write a test that exercises all these classes. We will use the Specs library
(discussed in “Specs” on page 363) to write a Behavior-Driven Development ([BDD])
“specification” that exercises the combined Button and Subject types:

// code-examples/Traits/ui/button-observer-spec.scala

package ui
import org.specs._
import observer._

object ButtonObserverSpec extends Specification {
 "A Button Observer" should {
 "observe button clicks" in {
 val observableButton = new ObservableButton("Okay")
 val buttonObserver = new ButtonCountObserver
 observableButton.addObserver(buttonObserver)

 for (i <- 1 to 3) observableButton.click()
 buttonObserver.count mustEqual 3
 }
 }
}

If you downloaded the code examples from the O’Reilly site, you can follow the direc-
tions in its README files for building and running the examples in this chapter. The
output of the specs “target” of the build should include the following text:

Specification "ButtonCountObserverSpec"
 A Button Observer should
 + observe button clicks

80 | Chapter 4: Traits

http://oreilly.com/catalog/9780596155957/

Total for specification "ButtonCountObserverSpec":
Finished in 0 second, 10 ms
1 example, 1 expectation, 0 failure, 0 error

Notice that the strings A Button Observer should and observe button clicks corre-
spond to strings in the example. The output of a Specs run provides a nice summary of
the requirements for the items being tested, assuming good choices were made for the
strings.

The body of the test creates an “Okay” ObservableButton and a ButtonCountObserver,
which gives the observer to the button. The button is clicked three times, using the
for loop. The last line requires the observer’s count to equal 3. If you are accustomed
to using an XUnit-style TDD tool, like JUnit (see [JUnit]) or ScalaTest (see [ScalaTest-
Tool] and “ScalaTest” on page 361), then the last line is equivalent to the following
JUnit assertion:

assertEquals(3, buttonObserver.count)

The Specs library (see “Specs” on page 363) and the ScalaTest library
(see “ScalaTest” on page 361) both support Behavior-Driven Develop-
ment ([BDD]), a style of Test-Driven Development ([TDD]) that empha-
sizes the “specification” role of tests.

Suppose we need only one ObservableButton instance? We actually don’t have to de-
clare a class that subclasses Button with Subject. We can incorporate the trait when we
create the instance.

The next example shows a revised Specs file that instantiates a Button with Subject
mixed in as part of the declaration:

// code-examples/Traits/ui/button-observer-anon-spec.scala

package ui
import org.specs._
import observer._

object ButtonObserverAnonSpec extends Specification {
 "A Button Observer" should {
 "observe button clicks" in {
 val observableButton = new Button("Okay") with Subject {
 override def click() = {
 super.click()
 notifyObservers
 }
 }

 val buttonObserver = new ButtonCountObserver
 observableButton.addObserver(buttonObserver)

 for (i <- 1 to 3) observableButton.click()
 buttonObserver.count mustEqual 3

Introducing Traits | 81

 }
 }
}

The revised declaration of observableButton actually creates an anonymous class in
which we override the click method, as before. The main difference with creating
anonymous classes in Java is that we can incorporate traits in this process. Java does
not let you implement a new interface while instantiating a class.

Finally, note that the inheritance hierarchy for an instance can be complex if it mixes
in traits that extend other traits, etc. We’ll discuss the details of the hierarchy in
“Linearization of an Object’s Hierarchy” on page 159.

Stackable Traits
There are a couple of refinements we can do to improve the reusability of our work and
to make it easier to use more than one trait at a time, i.e., to “stack” them.

First, let’s introduce a new trait, Clickable, an abstraction for any widget that responds
to clicks:

// code-examples/Traits/ui2/clickable.scala

package ui2

trait Clickable {
 def click()
}

We’re starting with a new package, ui2, to make it easier to keep older
and newer versions of the examples distinct in the downloadable code.

The Clickable trait looks just like a Java interface; it is completely abstract. It defines
a single, abstract method, click. The method is abstract because it has no body. If
Clickable were a class, we would have to add the abstract keyword in front of the
class keyword. This is not necessary for traits.

Here is the refactored button, which uses the trait:

// code-examples/Traits/ui2/button.scala

package ui2

import ui.Widget

class Button(val label: String) extends Widget with Clickable {
 def click() = {
 // Logic to give the appearance of clicking a button...

82 | Chapter 4: Traits

 }
}

This code is like Java code that implements a Clickable interface.

When we previously defined ObservableButton (in “Traits As Mixins” on page 76), we
overrode Button.click to notify the observers. We had to duplicate that logic in
ButtonObserverAnonSpec when we declared observableButton as a Button instance that
mixed in the Subject trait directly. Let’s eliminate this duplication.

When we refactor the code this way, we realize that we don’t really care about observing
buttons; we care about observing clicks. Here is a trait that focuses solely on observing
Clickable:

// code-examples/Traits/ui2/observable-clicks.scala

package ui2
import observer._

trait ObservableClicks extends Clickable with Subject {
 abstract override def click() = {
 super.click()
 notifyObservers
 }
}

The ObservableClicks trait extends Clickable and mixes in Subject. It then overrides
the click method with an implementation that looks almost the same as the overridden
method shown in “Traits As Mixins” on page 76. The important difference is the
abstract keyword.

Look closely at this method. It calls super.click(), but what is super in this case? At
this point, it could only appear to be Clickable, which declares but does not define the
click method, or it could be Subject, which doesn’t have a click method. So, super
can’t be bound, at least not yet.

In fact, super will be bound when this trait is mixed into an instance that defines a
concrete click method, such as Button. Therefore, we need an abstract keyword on
ObservableClicks.click to tell the compiler (and the reader) that click is not yet fully
implemented, even though ObservableClicks.click has a body.

Except for declaring abstract classes, the abstract keyword is only re-
quired on a method in a trait when the method has a body, but it calls
the super method that doesn’t have a concrete implementation in
parents of the trait.

Let’s use this trait with Button and its concrete click method in a Specs test:

// code-examples/Traits/ui2/button-clickable-observer-spec.scala

package ui2

Stackable Traits | 83

import org.specs._
import observer._
import ui.ButtonCountObserver

object ButtonClickableObserverSpec extends Specification {
 "A Button Observer" should {
 "observe button clicks" in {
 val observableButton = new Button("Okay") with ObservableClicks
 val buttonClickCountObserver = new ButtonCountObserver
 observableButton.addObserver(buttonClickCountObserver)

 for (i <- 1 to 3) observableButton.click()
 buttonClickCountObserver.count mustEqual 3
 }
 }
}

Compare this code to ButtonObserverAnonSpec. We instantiate a Button with the
ObservableClicks trait mixed in, but now there is no override of click required. Hence,
this client of Button doesn’t have to worry about properly overriding click. The hard
work is already done by ObservableClicks. The desired behavior is composed declara-
tively when needed.

Let’s finish our example by adding a second trait. The JavaBeans specification (see
[JavaBeansSpec]) has the idea of “vetoable” events, where listeners for changes to a
JavaBean can veto the change. Let’s implement something similar with a trait that
vetoes more than a set number of clicks:

// code-examples/Traits/ui2/vetoable-clicks.scala

package ui2
import observer._

trait VetoableClicks extends Clickable {
 val maxAllowed = 1 // default
 private var count = 0

 abstract override def click() = {
 if (count < maxAllowed) {
 count += 1
 super.click()
 }
 }
}

Once again, we override the click method. As before, the override must be declared
abstract. The maximum allowed number of clicks defaults to 1. You might wonder
what we mean by “defaults” here. Isn’t the field declared to be a val? There is no
constructor defined to initialize it to another value. We’ll revisit these questions in
“Overriding Members of Classes and Traits” on page 111.

This trait also declares a count variable to keep track of the number of clicks seen.
It is declared private, so it is invisible outside the trait (see “Visibility

84 | Chapter 4: Traits

Rules” on page 96). The overridden click method increments count. It only calls the
super.click() method if the count is less than or equal to the maxAllowed count.

Here is a Specs object that demonstrates ObservableClicks and VetoableClicks working
together. Note that a separate with keyword is required for each trait, as opposed to
using one keyword and separating the names with commas, as Java does for
implements clauses:

// code-examples/Traits/ui2/button-clickable-observer-vetoable-spec.scala

package ui2
import org.specs._
import observer._
import ui.ButtonCountObserver

object ButtonClickableObserverVetoableSpec extends Specification {
 "A Button Observer with Vetoable Clicks" should {
 "observe only the first button click" in {
 val observableButton =
 new Button("Okay") with ObservableClicks with VetoableClicks
 val buttonClickCountObserver = new ButtonCountObserver
 observableButton.addObserver(buttonClickCountObserver)

 for (i <- 1 to 3) observableButton.click()
 buttonClickCountObserver.count mustEqual 1
 }
 }
}

The expected observer count is 1. The observableButton is declared as follows:

new Button("Okay") with ObservableClicks with VetoableClicks

We can infer that the click override in VetoableClicks is called before the click override
in ObservableClicks. Loosely speaking, since our anonymous class doesn’t define
click itself, the method lookup proceeds right to left, as declared. It’s actually more
complicated than that, as we’ll see later in “Linearization of an Object’s Hierar-
chy” on page 159.

In the meantime, what happens if we use the traits in the reverse order?

// code-examples/Traits/ui2/button-vetoable-clickable-observer-spec.scala

package ui2
import org.specs._
import observer._
import ui.ButtonCountObserver

object ButtonVetoableClickableObserverSpec extends Specification {
 "A Vetoable Button with Click Observer" should {
 "observe all the button clicks, even when some are vetoed" in {
 val observableButton =
 new Button("Okay") with VetoableClicks with ObservableClicks
 val buttonClickCountObserver = new ButtonCountObserver
 observableButton.addObserver(buttonClickCountObserver)

Stackable Traits | 85

 for (i <- 1 to 3) observableButton.click()
 buttonClickCountObserver.count mustEqual 3
 }
 }
}

Now the expected observer count is 3. ObservableClicks now has precedence over
VetoableClicks, so the count of clicks is incremented, even when some clicks are sub-
sequently vetoed!

So, the order of declaration matters, which is important to remember for preventing
unexpected behavior when traits impact each other. Perhaps another lesson to note is
that splitting objects into too many fine-grained traits can obscure the order of execu-
tion in your code!

Breaking up your application into small, focused traits is a powerful way to create
reusable, scalable abstractions and “components.” Complex behaviors can be built up
through declarative composition of traits. We will explore this idea in greater detail in
“Scalable Abstractions” on page 313.

Constructing Traits
Traits don’t support auxiliary constructors, nor do they accept an argument list for the
primary constructor, the body of a trait. Traits can extend classes or other traits. How-
ever, they can’t pass arguments to the parent class constructor (even literal values), so
traits can only extend classes that have a no-argument primary or auxiliary constructor.

However, like classes, the body of a trait is executed every time an instance is created
that uses the trait, as demonstrated by the following script:

// code-examples/Traits/trait-construction-script.scala

trait T1 {
 println(" in T1: x = " + x)
 val x=1
 println(" in T1: x = " + x)
}
trait T2 {
 println(" in T2: y = " + y)
 val y="T2"
 println(" in T2: y = " + y)
}

class Base12 {
 println(" in Base12: b = " + b)
 val b="Base12"
 println(" in Base12: b = " + b)
}
class C12 extends Base12 with T1 with T2 {
 println(" in C12: c = " + c)
 val c="C12"

86 | Chapter 4: Traits

 println(" in C12: c = " + c)
}
println("Creating C12:")
new C12
println("After Creating C12")

Running this script with the scala command yields the following output:

Creating C12:
 in Base12: b = null
 in Base12: b = Base12
 in T1: x = 0
 in T1: x = 1
 in T2: y = null
 in T2: y = T2
 in C12: c = null
 in C12: c = C12
After Creating C12

Notice the order of invocation of the class and trait constructors. Since the declaration
of C12 is extends Base12 with T1 with T2, the order of construction for this simple class
hierarchy is left to right, starting with the base class Base12, followed by the traits T1
and T2, and ending with the C12 constructor body. (For constructing arbitrarily
complex hierarchies, see “Linearization of an Object’s Hierarchy” on page 159.)

So, while you can’t pass construction parameters to traits, you can initialize fields with
default values or leave them abstract. We actually saw this before in our Subject trait,
where the Subject.observers field was initialized to an empty list.

If a concrete field in a trait does not have a suitable default value, there is no “fail-safe”
way to initialize the value. All the alternative approaches require some ad hoc steps by
users of the trait, which is error-prone because they might do it wrong or forget to do
it all. Perhaps the field should be left abstract, so that classes or other traits that use
this trait are forced to define the value appropriately. We’ll discuss overriding abstract
and concrete members in detail in Chapter 6.

Another solution is to move that field to a separate class, where the construction process
can guarantee that the correct initialization data is supplied by the user. It might be
that the whole trait should actually be a class instead, so you can define a constructor
for it that initializes the field.

Class or Trait?
When considering whether a “concept” should be a trait or a class, keep in mind that
traits as mixins make the most sense for “adjunct” behavior. If you find that a particular
trait is used most often as a parent of other classes, so that the child classes behave as
the parent trait, then consider defining the trait as a class instead, to make this logical
relationship more clear. (We said behaves as, rather than is a, because the former is the
more precise definition of inheritance, based on the Liskov Substitution Principle—see
[Martin2003], for example.)

Constructing Traits | 87

Avoid concrete fields in traits that can’t be initialized to suitable default
values. Use abstract fields instead, or convert the trait to a class with
a constructor. Of course, stateless traits don’t have any issues with
initialization.

It’s a general principle of good object-oriented design that an instance should always
be in a known valid state, starting from the moment the construction process finishes.

Recap and What’s Next
In this chapter, we learned how to use traits to encapsulate and share cross-cutting
concerns between classes. We covered when and how to use traits, how to “stack”
multiple traits, and the rules for initializing values within traits.

In the next chapter, we explore how the fundamentals of object-oriented programming
work in Scala. Even if you’re an old hand at object-oriented programming, you’ll want
to read the next several chapters to understand the particulars of Scala’s approach to
OOP.

88 | Chapter 4: Traits

CHAPTER 5

Basic Object-Oriented Programming
in Scala

Scala is an object-oriented language like Java, Python, Ruby, Smalltalk, and others. If
you’re coming from the Java world, you’ll notice some notable improvements over the
limitations of Java’s object model.

We assume you have some prior experience with object-oriented programming (OOP),
so we will not discuss the basic principles here, although some common terms and
concepts are discussed in the Glossary on page 393. See [Meyer1997] for a detailed
introduction to OOP; see [Martin2003] for a recent treatment of OOP principles in the
context of “agile software development”; see [GOF1995] to learn about design pat-
terns; and see [WirfsBrock2003] for a discussion of object-oriented design concepts.

Class and Object Basics
Let’s review the terminology of OOP in Scala.

We saw previously that Scala has the concept of a declared object,
which we’ll dig into in “Classes and Objects: Where Are the Stat-
ics?” on page 148. We’ll use the term instance to refer to a class instance
generically, meaning either an object or an instance of a class, to avoid
the potential for confusion between these two concepts.

Classes are declared with the keyword class. We will see later that additional keywords
can also be used, like final to prevent creation of derived classes and abstract to indi-
cate that the class can’t be instantiated, usually because it contains or inherits member
declarations without providing concrete definitions for them.

An instance can refer to itself using the this keyword, just as in Java and similar
languages.

89

Following Scala’s convention, we use the term method for a function that is tied to an
instance. Some other object-oriented languages use the term “member function.”
Method definitions start with the def keyword.

Like Java, but unlike Ruby and Python, Scala allows overloaded methods. Two or more
methods can have the same name as long as their full signatures are unique. The sig-
nature includes the type name, the list of parameters with types, and the method’s
return value.

There is an exception to this rule due to type erasure, which is a feature of the JVM
only, but is used by Scala on both the JVM and .NET platforms, to minimize incom-
patibilities. Suppose two methods are identical except that one takes a parameter of
type List[String] while the other takes a parameter of type List[Int], as follows:

// code-examples/BasicOOP/type-erasure-wont-compile.scala
// WON'T COMPILE

object Foo {
 def bar(list: List[String]) = list.toString
 def bar(list: List[Int]) = list.size.toString
}

You’ll get a compilation error on the second method because the two methods will
have an identical signature after type erasure.

The scala interpreter will let you type in both methods. It simply drops
the first version. However, if you try to load the previous example using
the :load file command, you’ll get the same error scalac raises.

We’ll discuss type erasure in more detail in Chapter 12.

Also by convention, we use the term field for a variable that is tied to an instance. The
term attribute is often used in other languages (like Ruby). Note that the state of an
instance is the union of all the values currently represented by the instance’s fields.

As we discussed in “Variable Declarations” on page 24, read-only (“value”) fields are
declared using the val keyword, and read-write fields are declared using the var
keyword.

Scala also allows types to be declared in classes, as we saw in “Abstract Types And
Parameterized Types” on page 47.

We use the term member to refer to a field, method, or type in a generic way. Note that
field and method members (but not type members) share the same namespace, unlike
Java. We’ll discuss this more in “When Accessor Methods and Fields Are Indistin-
guishable: The Uniform Access Principle” on page 123.

Finally, new instances of reference types are created from a class using the new keyword,
as in languages like Java and C#. Note that you can drop the parentheses when using
a default constructor (i.e., one that takes no arguments). In some cases, literal values

90 | Chapter 5: Basic Object-Oriented Programming in Scala

can be used instead, e.g., val name = "Programming Scala" is equivalent to val name =
new String("Programming Scala").

Instances of value types (Int, Double, etc.), which correspond to the primitives in lan-
guages like Java, are always created using literal values, e.g., 1, 3.14. In fact, there are
no public constructors for these types, so an expression like val i = new Int(1) won’t
compile.

We’ll discuss the difference between reference and value types in “The Scala Type
Hierarchy” on page 155.

Parent Classes
Scala supports single inheritance, not multiple inheritance. A child (or derived) class
can have one and only one parent (or base) class. The sole exception is the root of the
Scala class hierarchy, Any, which has no parent.

We’ve seen several examples of parent and child classes. Here are snippets of one of
the first we saw, in “Abstract Types And Parameterized Types” on page 47:

// code-examples/TypeLessDoMore/abstract-types-script.scala

import java.io._

abstract class BulkReader {
 // ...
}

class StringBulkReader(val source: String) extends BulkReader {
 // ...
}

class FileBulkReader(val source: File) extends BulkReader {
 // ...
}

As in Java, the keyword extends indicates the parent class, in this case BulkReader. In
Scala, extends is also used when a class inherits a trait as its parent (even when it mixes
in other traits using the with keyword). Also, extends is used when one trait is the child
of another trait or class. Yes, traits can inherit classes.

If you don’t extend a parent class, the default parent is AnyRef, a direct child class of
Any. (We discuss the difference between Any and AnyRef when we discuss the Scala type
hierarchy in “The Scala Type Hierarchy” on page 155.)

Constructors in Scala
Scala distinguishes between a primary constructor and zero or more auxiliary construc-
tors. In Scala, the primary constructor is the entire body of the class. Any parameters

Constructors in Scala | 91

that the constructor requires are listed after the class name. We’ve seen many examples
of this already, as in the ButtonWithCallbacks example we used in Chapter 4:

// code-examples/Traits/ui/button-callbacks.scala

package ui

class ButtonWithCallbacks(val label: String,
 val clickedCallbacks: List[() => Unit]) extends Widget {

 require(clickedCallbacks != null, "Callback list can't be null!")

 def this(label: String, clickedCallback: () => Unit) =
 this(label, List(clickedCallback))

 def this(label: String) = {
 this(label, Nil)
 println("Warning: button has no click callbacks!")
 }

 def click() = {
 // ... logic to give the appearance of clicking a physical button ...
 clickedCallbacks.foreach(f => f())
 }
}

The ButtonWithCallbacks class represents a button on a graphical user interface. It has
a label and a list of callback functions that are invoked if the button is clicked. Each
callback function takes no arguments and returns Unit. The click method iterates
through the list of callbacks and invokes each one.

ButtonWithCallbacks defines three constructors. The primary constructor, which is the
body of the entire class, has a parameter list that takes a label string and a list of callback
functions. Because each parameter is declared as a val, the compiler generates a private
field corresponding to each parameter (a different internal name is used), along with a
public reader method that has the same name as the parameter. “Private” and “public”
have the same meaning here as in most object-oriented languages. We’ll discuss the
various visibility rules and the keywords that control them in “Visibility
Rules” on page 96.

If a parameter has the var keyword, a public writer method is also generated with the
parameter’s name as a prefix, followed by _=. For example, if label were declared as a
var, the writer method would be named label_= and it would take a single argument
of type String.

There are times when you don’t want the accessor methods to be generated automat-
ically. In other words, you want the field to be private. Add the private keyword before
the val or var keyword, and the accessor methods won’t be generated. (See “Visibility
Rules” on page 96 for more details.)

92 | Chapter 5: Basic Object-Oriented Programming in Scala

For you Java programmers, Scala doesn’t follow the JavaBeans [Java-
BeansSpec] convention that field reader and writer methods begin with
get and set, respectively, followed by the field name with the first char-
acter capitalized. We’ll see why when we discuss the Uniform Access
Principle in “When Accessor Methods and Fields Are Indistinguishable:
The Uniform Access Principle” on page 123. However, you can get
JavaBeans-style getters and setters when you need them using the
scala.reflect.BeanProperty annotation, as we’ll discuss in “JavaBean
Properties” on page 374.

When an instance of the class is created, each field corresponding to a parameter in the
parameter list will be initialized with the parameter automatically. No constructor logic
is required to initialize these fields, in contrast to most other object-oriented languages.

The first statement in the ButtonWithCallbacks class (i.e., the constructor) body is a test
to ensure that a non-null list has been passed to the constructor. (It does allow an empty
Nil list, however.) It uses the convenient require function that is imported automati-
cally into the current scope (as we’ll discuss in “The Predef Object” on page 145). If
the list is null, require will throw an exception. The require function and its companion
assume are very useful for Design by Contract programming, as discussed in “Better
Design with Design By Contract” on page 340.

Here is part of a full specification for ButtonWithCallbacks that demonstrates the
require statement in use:

// code-examples/Traits/ui/button-callbacks-spec.scala
package ui
import org.specs._

object ButtonWithCallbacksSpec extends Specification {
 "A ButtonWithCallbacks" should {
 // ...
 "not be constructable with a null callback list" in {
 val nullList:List[() => Unit] = null
 val errorMessage =
 "requirement failed: Callback list can't be null!"
 (new ButtonWithCallbacks("button1", nullList)) must throwA(
 new IllegalArgumentException(errorMessage))
 }
 }
}

Scala even makes it difficult to pass null as the second parameter to the constructor; it
won’t type check when you compile it. However, you can assign null to a value, as
shown. If we didn’t have the must throwA(...) clause, we would see the following
exception thrown:

java.lang.IllegalArgumentException: requirement failed: Callback list can't be null!
 at scala.Predef$.require(Predef.scala:112)
 at ui.ButtonWithCallbacks.<init>(button-callbacks.scala:7)
...

Constructors in Scala | 93

ButtonWithCallbacks defines two auxiliary constructors for the user’s convenience. The
first auxiliary constructor accepts a label and a single callback. It calls the primary
constructor, passing the label and a new List to wrap the single callback.

The second auxiliary constructor accepts just a label. It calls the primary constructor
with Nil (which represents an empty List object). The constructor then prints a warn-
ing message that there are no callbacks, since lists are immutable and there is no way
to replace the callback list val with a new one.

To avoid infinite recursion, Scala requires each auxiliary constructor to invoke another
constructor defined before it (see [ScalaSpec2009]). The constructor invoked may be
either another auxiliary constructor or the primary constructor, and it must be the first
statement in the auxiliary constructor’s body. Additional processing can occur after
this call, such as the warning message printed in our example.

Because all auxiliary constructors eventually invoke the primary con-
structor, logic checks and other initializations done in the body will be
performed consistently for all instances created.

There are a few advantages of Scala’s constraints on constructors:

Elimination of duplication
Because auxiliary constructors invoke the primary constructor, potential duplica-
tion of construction logic is largely eliminated.

Code size reduction
As shown in the examples, when one or more of the primary constructor param-
eters is declared as a val or a var, Scala automatically generates a field, the appro-
priate accessor methods (unless they are declared private), and the initialization
logic for when instances are created.

There is also at least one disadvantage of Scala’s constraints on constructors:

Less flexibility
Sometimes it’s just not convenient to have one constructor body that all construc-
tors are forced to use. However, we find these circumstances to be rare. In such
cases, it may simply be that the class has too many responsibilities and it should
be refactored into smaller classes.

Calling Parent Class Constructors
The primary constructor in a derived class must invoke one of the parent class con-
structors, either the primary constructor or an auxiliary constructor. In the following
example, a class derived from ButtonWithCallbacks, called RadioButtonWithCallbacks,
invokes the primary ButtonWithCallbacks constructor. “Radio” buttons can be either
on or off:

94 | Chapter 5: Basic Object-Oriented Programming in Scala

// code-examples/BasicOOP/ui/radio-button-callbacks.scala

package ui

/**
 * Button with two states, on or off, like an old-style,
 * channel-selection button on a radio.
 */
class RadioButtonWithCallbacks(
 var on: Boolean, label: String, clickedCallbacks: List[() => Unit])
 extends ButtonWithCallbacks(label, clickedCallbacks) {

 def this(on: Boolean, label: String, clickedCallback: () => Unit) =
 this(on, label, List(clickedCallback))

 def this(on: Boolean, label: String) = this(on, label, Nil)
}

The primary constructor for RadioButtonWithCallbacks takes three parameters: an on
state (true or false), a label, and a list of callbacks. It passes the label and list of callbacks
to its parent class, ButtonWithCallbacks. The on parameter is declared as a var, so it is
mutable. on is also the one constructor parameter unique to a radio button, so it is kept
as an attribute of RadioButtonWithCallbacks.

For consistency with its parent class, RadioButtonWithCallbacks also declares two aux-
iliary constructors. Note that they must invoke a preceding constructor in RadioButton
WithCallbacks, as before. They can’t invoke a ButtonWithCallbacks constructor directly.
Declaring all these constructors in each class could get tedious after a while, but we
explored techniques in Chapter 4 that can eliminate repetition.

While super is used to invoke overridden methods, as in Java, it cannot
be used to invoke a super class constructor.

Nested Classes
Scala lets you nest class declarations, like many object-oriented languages. Suppose we
want all Widgets to have a map of properties. These properties could be size, color,
whether or not the widget is visible, etc. We might use a simple map to hold the
properties, but let’s assume that we also want to control access to the properties, and
to perform other operations when they change.

Here is one way we might expand our original Widget example from “Traits As Mix-
ins” on page 76 to add this feature:

// code-examples/BasicOOP/ui/widget.scala

package ui

Nested Classes | 95

abstract class Widget {
 class Properties {
 import scala.collection.immutable.HashMap

 private var values: Map[String, Any] = new HashMap

 def size = values.size

 def get(key: String) = values.get(key)

 def update(key: String, value: Any) = {
 // Do some preprocessing, e.g., filtering.
 values = values.update(key, value)
 // Do some postprocessing.
 }
 }

 val properties = new Properties
}

We added a Properties class that has a private, mutable reference to an immutable
HashMap. We also added three public methods that retrieve the size (i.e., the number of
properties defined), retrieve a single element in the map, and update the map with a
new element, respectively. We might need to do additional work in the update method,
and we’ve indicated as much with comments.

You can see from the previous example that Scala allows classes to be
declared inside one another, or “nested.” A nested class make sense
when you have enough related functionality to lump together in a class,
but the functionality is only ever going to be used by its “outer” class.

So far, we’ve covered how to declare classes, how to instantiate them, and some of the
basics of inheritance. In the next section, we’ll discuss visibility rules within classes and
objects.

Visibility Rules

For convenience, we’ll use the word “type” in this section to refer to
classes and traits generically, as opposed to referring to member type
declarations. We’ll include those when we use the term “member”
generically, unless otherwise indicated.

Most object-oriented languages have constructs to constrain the visibility (or scope) of
type and type-member declarations. These constructs support the object-oriented form
of encapsulation, where only the essential public abstraction of a class or trait is exposed
and implementation information is hidden from view.

96 | Chapter 5: Basic Object-Oriented Programming in Scala

You’ll want to use public visibility for anything that users of your classes and objects
should see and use. Keep in mind that the set of publicly visible members form the
abstraction exposed by the type, along with the type’s name itself.

The conventional wisdom in object-oriented design is that fields should be private or
protected. If access is required, it should happen through methods, but not everything
should be accessible by default. The virtue of the Uniform Access Principle (see “When
Accessor Methods and Fields Are Indistinguishable: The Uniform Access Princi-
ple” on page 123) is that we can give the user the semantics of public field access via
either a method or direct access to a field, whichever is appropriate for the task.

The art of good object-oriented design includes defining minimal, clear,
and cohesive public abstractions.

There are two kinds of “users” of a type: derived types, and code that works with
instances of the type. Derived types usually need more access to the members of their
parent types than users of instances do.

Scala’s visibility rules are similar to Java’s, but tend to be both more consistently applied
and more flexible. For example, in Java, if an inner class has a private member, the
enclosing class can see it. In Scala, the enclosing class can’t see a private member, but
Scala provides another way to declare it visible to the enclosing class.

As in Java and C#, the keywords that modify visibility, such as private and
protected, appear at the beginning of declarations. You’ll find them before the class
or trait keywords for types, before the val or var for fields, and before the def for
methods.

You can also use an access modifier keyword on the primary constructor
of a class. Put it after the type name and type parameters, if any, and
before the argument list, as in this example: class Restricted[+A]
private (name: String) {...}

Table 5-1 summarizes the visibility scopes.

Table 5-1. Visibility scopes

Name Keyword Description

public none Public members and types are visible everywhere, across all boundaries.

protected protected Protected members are visible to the defining type, to derived types, and to
nested types. Protected types are visible only within the same package and
subpackages.

Visibility Rules | 97

Name Keyword Description

private private Private members are visible only within the defining type and nested types.
Private types are visible only within the same package.

scoped protected protected[scope] Visibility is limited to scope, which can be a package, type, or this (meaning
the same instance, when applied to members, or the enclosing package, when
applied to types). See the text below for details.

scoped private private[scope] Synonymous with scoped protected visibility, except under inheritance (dis-
cussed below).

Let’s explore these visibility options in more detail. To keep things simple, we’ll use
fields for member examples. Method and type declarations behave the same way.

Unfortunately, you can’t apply any of the visibility modifiers to pack-
ages. Therefore, a package is always public, even when it contains no
publicly visible types.

Public Visibility
Any declaration without a visibility keyword is “public,” meaning it is visible every-
where. There is no public keyword in Scala. This is in contrast to Java, which defaults
to public visibility only within the enclosing package (i.e., “package private”). Other
object-oriented languages, like Ruby, also default to public visibility:

// code-examples/BasicOOP/scoping/public.scala

package scopeA {
 class PublicClass1 {
 val publicField = 1

 class Nested {
 val nestedField = 1
 }

 val nested = new Nested
 }

 class PublicClass2 extends PublicClass1 {
 val field2 = publicField + 1
 val nField2 = new Nested().nestedField
 }
}

package scopeB {
 class PublicClass1B extends scopeA.PublicClass1

 class UsingClass(val publicClass: scopeA.PublicClass1) {
 def method = "UsingClass:" +
 " field: " + publicClass.publicField +

98 | Chapter 5: Basic Object-Oriented Programming in Scala

 " nested field: " + publicClass.nested.nestedField
 }
}

You can compile this file with scalac. It should compile without error.

Everything is public in these packages and classes. Note that scopeB.UsingClass can
access scopeA.PublicClass1 and its members, including the instance of Nested and its
public field.

Protected Visibility
Protected visibility is for the benefit of implementers of derived types, who need a little
more access to the details of their parent types. Any member declared with the
protected keyword is visible only to the defining type, including other instances of the
same type and any derived types. When applied to a type, protected limits visibility to
the enclosing package.

Java, in contrast, makes protected members visible throughout the enclosing package.
Scala handles this case with scoped private and protected access:

// code-examples/BasicOOP/scoping/protected-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class ProtectedClass1(protected val protectedField1: Int) {
 protected val protectedField2 = 1

 def equalFields(other: ProtectedClass1) =
 (protectedField1 == other.protectedField1) &&
 (protectedField1 == other.protectedField1) &&
 (nested == other.nested)

 class Nested {
 protected val nestedField = 1
 }

 protected val nested = new Nested
 }

 class ProtectedClass2 extends ProtectedClass1(1) {
 val field1 = protectedField1
 val field2 = protectedField2
 val nField = new Nested().nestedField // ERROR
 }

 class ProtectedClass3 {
 val protectedClass1 = new ProtectedClass1(1)
 val protectedField1 = protectedClass1.protectedField1 // ERROR
 val protectedField2 = protectedClass1.protectedField2 // ERROR
 val protectedNField = protectedClass1.nested.nestedField // ERROR
 }

Visibility Rules | 99

 protected class ProtectedClass4

 class ProtectedClass5 extends ProtectedClass4
 protected class ProtectedClass6 extends ProtectedClass4
}

package scopeB {
 class ProtectedClass4B extends scopeA.ProtectedClass4 // ERROR
}

When you compile this file with scalac, you get the following output. (The file names
before the N: line numbers have been removed from the output to better fit the space.)

16: error: value nestedField cannot be accessed in ProtectedClass2.this.Nested
 val nField = new Nested().nestedField
 ^
20: error: value protectedField1 cannot be accessed in scopeA.ProtectedClass1
 val protectedField1 = protectedClass1.protectedField1
 ^
21: error: value protectedField2 cannot be accessed in scopeA.ProtectedClass1
 val protectedField2 = protectedClass1.protectedField2
 ^
22: error: value nested cannot be accessed in scopeA.ProtectedClass1
 val protectedNField = protectedClass1.nested.nestedField
 ^
32: error: class ProtectedClass4 cannot be accessed in package scopeA
 class ProtectedClass4B extends scopeA.ProtectedClass4
 ^
5 errors found

The // ERROR comments in the listing mark the lines that fail to parse.

ProtectedClass2 can access protected members of ProtectedClass1, since it derives
from it. However, it can’t access the protected nestedField in protectedClass1.nes
ted. Also, ProtectedClass3 can’t access protected members of the ProtectedClass1
instance it uses.

Finally, because ProtectedClass4 is declared protected, it is not visible in the scopeB
package.

Private Visibility
Private visibility completely hides implementation details, even from the implementers
of derived classes. Any member declared with the private keyword is visible only to
the defining type, including other instances of the same type. When applied to a type,
private limits visibility to the enclosing package:

// code-examples/BasicOOP/scoping/private-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class PrivateClass1(private val privateField1: Int) {
 private val privateField2 = 1

100 | Chapter 5: Basic Object-Oriented Programming in Scala

 def equalFields(other: PrivateClass1) =
 (privateField1 == other.privateField1) &&
 (privateField2 == other.privateField2) &&
 (nested == other.nested)

 class Nested {
 private val nestedField = 1
 }

 private val nested = new Nested
 }

 class PrivateClass2 extends PrivateClass1(1) {
 val field1 = privateField1 // ERROR
 val field2 = privateField2 // ERROR
 val nField = new Nested().nestedField // ERROR
 }

 class PrivateClass3 {
 val privateClass1 = new PrivateClass1(1)
 val privateField1 = privateClass1.privateField1 // ERROR
 val privateField2 = privateClass1.privateField2 // ERROR
 val privateNField = privateClass1.nested.nestedField // ERROR
 }

 private class PrivateClass4

 class PrivateClass5 extends PrivateClass4 // ERROR
 protected class PrivateClass6 extends PrivateClass4 // ERROR
 private class PrivateClass7 extends PrivateClass4
}

package scopeB {
 class PrivateClass4B extends scopeA.PrivateClass4 // ERROR
}

Compiling this file yields the following output:

14: error: not found: value privateField1
 val field1 = privateField1
 ^
15: error: not found: value privateField2
 val field2 = privateField2
 ^
16: error: value nestedField cannot be accessed in PrivateClass2.this.Nested
 val nField = new Nested().nestedField
 ^
20: error: value privateField1 cannot be accessed in scopeA.PrivateClass1
 val privateField1 = privateClass1.privateField1
 ^
21: error: value privateField2 cannot be accessed in scopeA.PrivateClass1
 val privateField2 = privateClass1.privateField2
 ^
22: error: value nested cannot be accessed in scopeA.PrivateClass1
 val privateNField = privateClass1.nested.nestedField
 ^

Visibility Rules | 101

27: error: private class PrivateClass4 escapes its defining scope as part
of type scopeA.PrivateClass4
 class PrivateClass5 extends PrivateClass4
 ^
28: error: private class PrivateClass4 escapes its defining scope as part
of type scopeA.PrivateClass4
 protected class PrivateClass6 extends PrivateClass4
 ^
33: error: class PrivateClass4 cannot be accessed in package scopeA
 class PrivateClass4B extends scopeA.PrivateClass4
 ^
9 errors found

Now, PrivateClass2 can’t access private members of its parent class PrivateClass1.
They are completely invisible to the subclass, as indicated by the error messages. Nor
can it access a private field in a Nested class.

Just as for the case of protected access, PrivateClass3 can’t access private members of
the PrivateClass1 instance it is using. Note, however, that the equalFields method can
access private members of the other instance.

The declarations of PrivateClass5 and PrivateClass6 fail because, if allowed, they
would enable PrivateClass4 to “escape its defining scope.” However, the declaration
of PrivateClass7 succeeds because it is also declared to be private. Curiously, our pre-
vious example was able to declare a public class that subclassed a protected class with-
out a similar error.

Finally, just as for protected type declarations, the private types can’t be subclassed
outside the same package.

Scoped Private and Protected Visibility
Scala allows you to fine-tune the scope of visibility with the scoped private and
protected visibility declarations. Note that using private or protected in a scoped dec-
laration is interchangeable, as they behave identically, except under inheritance when
applied to members.

While either choice behaves the same in most scenarios, it is more com-
mon to see private[X] rather than protected[X] used in code. In the
core libraries included with Scala, the ratio is roughly five to one.

Let’s begin by considering the only differences in behavior between scoped private and
scoped protected—how they behave under inheritance when members have these
scopes:

// code-examples/BasicOOP/scoping/scope-inheritance-wont-compile.scala
// WON'T COMPILE

package scopeA {

102 | Chapter 5: Basic Object-Oriented Programming in Scala

 class Class1 {
 private[scopeA] val scopeA_privateField = 1
 protected[scopeA] val scopeA_protectedField = 2
 private[Class1] val class1_privateField = 3
 protected[Class1] val class1_protectedField = 4
 private[this] val this_privateField = 5
 protected[this] val this_protectedField = 6
 }

 class Class2 extends Class1 {
 val field1 = scopeA_privateField
 val field2 = scopeA_protectedField
 val field3 = class1_privateField // ERROR
 val field4 = class1_protectedField
 val field5 = this_privateField // ERROR
 val field6 = this_protectedField
 }
}

package scopeB {
 class Class2B extends scopeA.Class1 {
 val field1 = scopeA_privateField // ERROR
 val field2 = scopeA_protectedField
 val field3 = class1_privateField // ERROR
 val field4 = class1_protectedField
 val field5 = this_privateField // ERROR
 val field6 = this_protectedField
 }
}

Compiling this file yields the following output:

17: error: not found: value class1_privateField
 val field3 = class1_privateField // ERROR
 ^
19: error: not found: value this_privateField
 val field5 = this_privateField // ERROR
 ^
26: error: not found: value scopeA_privateField
 val field1 = scopeA_privateField // ERROR
 ^
28: error: not found: value class1_privateField
 val field3 = class1_privateField // ERROR
 ^
30: error: not found: value this_privateField
 val field5 = this_privateField // ERROR
 ^
5 errors found

The first two errors, inside Class2, show us that a derived class inside the same package
can’t reference a member that is scoped private to the parent class or this, but it can
reference a private member scoped to the package (or type) that encloses both Class1
and Class2.

Visibility Rules | 103

In contrast, for a derived class outside the same package, it has no access to any of the
scoped private members of Class1.

However, all the scoped protected members are visible in both derived classes.

We’ll use scoped private declarations for the rest of our examples and discussion, since
use of scoped private is a little more common in the Scala library than scoped protected,
when the previous inheritance scenarios aren’t a factor.

First, let’s start with the most restrictive visibility, private[this], as it affects type
members:

// code-examples/BasicOOP/scoping/private-this-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class PrivateClass1(private[this] val privateField1: Int) {
 private[this] val privateField2 = 1

 def equalFields(other: PrivateClass1) =
 (privateField1 == other.privateField1) && // ERROR
 (privateField2 == other.privateField2) &&
 (nested == other.nested)

 class Nested {
 private[this] val nestedField = 1
 }

 private[this] val nested = new Nested
 }

 class PrivateClass2 extends PrivateClass1(1) {
 val field1 = privateField1 // ERROR
 val field2 = privateField2 // ERROR
 val nField = new Nested().nestedField // ERROR
 }

 class PrivateClass3 {
 val privateClass1 = new PrivateClass1(1)
 val privateField1 = privateClass1.privateField1 // ERROR
 val privateField2 = privateClass1.privateField2 // ERROR
 val privateNField = privateClass1.nested.nestedField // ERROR
 }
}

Compiling this file yields the following output:

5: error: value privateField1 is not a member of scopeA.PrivateClass1
 (privateField1 == other.privateField1) &&
 ^
14: error: not found: value privateField1
 val field1 = privateField1
 ^
15: error: not found: value privateField2
 val field2 = privateField2
 ^

104 | Chapter 5: Basic Object-Oriented Programming in Scala

16: error: value nestedField is not a member of PrivateClass2.this.Nested
 val nField = new Nested().nestedField
 ^
20: error: value privateField1 is not a member of scopeA.PrivateClass1
 val privateField1 = privateClass1.privateField1
 ^
21: error: value privateField2 is not a member of scopeA.PrivateClass1
 val privateField2 = privateClass1.privateField2
 ^
22: error: value nested is not a member of scopeA.PrivateClass1
 val privateNField = privateClass1.nested.nestedField
 ^
7 errors found

Lines 6–8 also won’t parse. Since they are part of the expression that
started on line 5, the compiler stopped after the first error.

The private[this] members are only visible to the same instance. An instance of the
same class can’t see private[this] members of another instance, so the equalFields
method won’t parse.

Otherwise, the visibility of class members is the same as private without a scope
specifier.

When declaring a type with private[this], use of this effectively binds to the enclosing
package, as shown here:

// code-examples/BasicOOP/scoping/private-this-pkg-wont-compile.scala
// WON'T COMPILE

package scopeA {
 private[this] class PrivateClass1

 package scopeA2 {
 private[this] class PrivateClass2
 }

 class PrivateClass3 extends PrivateClass1 // ERROR
 protected class PrivateClass4 extends PrivateClass1 // ERROR
 private class PrivateClass5 extends PrivateClass1
 private[this] class PrivateClass6 extends PrivateClass1

 private[this] class PrivateClass7 extends scopeA2.PrivateClass2 // ERROR
}

package scopeB {
 class PrivateClass1B extends scopeA.PrivateClass1 // ERROR
}

Compiling this file yields the following output:

Visibility Rules | 105

8: error: private class PrivateClass1 escapes its defining scope as part
of type scopeA.PrivateClass1
 class PrivateClass3 extends PrivateClass1
 ^
9: error: private class PrivateClass1 escapes its defining scope as part
of type scopeA.PrivateClass1
 protected class PrivateClass4 extends PrivateClass1
 ^
13: error: type PrivateClass2 is not a member of package scopeA.scopeA2
 private[this] class PrivateClass7 extends scopeA2.PrivateClass2
 ^
17: error: type PrivateClass1 is not a member of package scopeA
 class PrivateClass1B extends scopeA.PrivateClass1
 ^
four errors found

In the same package, attempting to declare a public or protected subclass fails. Only
private and private[this] subclasses are allowed. Also, PrivateClass2 is scoped to
scopeA2, so you can’t declare it outside scopeA2. Similarly, an attempt to declare a class
in unrelated scopeB using PrivateClass1 also fails.

Hence, when applied to types, private[this] is equivalent to Java’s package private
visibility.

Next, let’s examine type-level visibility, private[T], where T is a type:

// code-examples/BasicOOP/scoping/private-type-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class PrivateClass1(private[PrivateClass1] val privateField1: Int) {
 private[PrivateClass1] val privateField2 = 1

 def equalFields(other: PrivateClass1) =
 (privateField1 == other.privateField1) &&
 (privateField2 == other.privateField2) &&
 (nested == other.nested)

 class Nested {
 private[Nested] val nestedField = 1
 }

 private[PrivateClass1] val nested = new Nested
 val nestedNested = nested.nestedField // ERROR
 }

 class PrivateClass2 extends PrivateClass1(1) {
 val field1 = privateField1 // ERROR
 val field2 = privateField2 // ERROR
 val nField = new Nested().nestedField // ERROR
 }

 class PrivateClass3 {
 val privateClass1 = new PrivateClass1(1)
 val privateField1 = privateClass1.privateField1 // ERROR

106 | Chapter 5: Basic Object-Oriented Programming in Scala

 val privateField2 = privateClass1.privateField2 // ERROR
 val privateNField = privateClass1.nested.nestedField // ERROR
 }
}

Compiling this file yields the following output:

12: error: value nestedField cannot be accessed in PrivateClass1.this.Nested
 val nestedNested = nested.nestedField
 ^
15: error: not found: value privateField1
 val field1 = privateField1
 ^
16: error: not found: value privateField2
 val field2 = privateField2
 ^
17: error: value nestedField cannot be accessed in PrivateClass2.this.Nested
 val nField = new Nested().nestedField
 ^
21: error: value privateField1 cannot be accessed in scopeA.PrivateClass1
 val privateField1 = privateClass1.privateField1
 ^
22: error: value privateField2 cannot be accessed in scopeA.PrivateClass1
 val privateField2 = privateClass1.privateField2
 ^
23: error: value nested cannot be accessed in scopeA.PrivateClass1
 val privateNField = privateClass1.nested.nestedField
 ^
7 errors found

A private[PrivateClass1] member is visible to other instances, so the equalFields
method now parses. Hence, private[T] is not as restrictive as private[this]. Note
that PrivateClass1 can’t see Nested.nestedField because that field is declared
private[Nested].

When members of T are declared private[T] the behavior is equivalent
to private. It is not equivalent to private[this], which is more
restrictive.

What if we change the scope of Nested.nestedField to be private[PrivateClass1]? Let’s
see how private[T] affects nested types:

// code-examples/BasicOOP/scoping/private-type-nested-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class PrivateClass1 {
 class Nested {
 private[PrivateClass1] val nestedField = 1
 }

 private[PrivateClass1] val nested = new Nested
 val nestedNested = nested.nestedField

Visibility Rules | 107

 }

 class PrivateClass2 extends PrivateClass1 {
 val nField = new Nested().nestedField // ERROR
 }

 class PrivateClass3 {
 val privateClass1 = new PrivateClass1
 val privateNField = privateClass1.nested.nestedField // ERROR
 }
}

Compiling this file yields the following output:

10: error: value nestedField cannot be accessed in PrivateClass2.this.Nested
 def nField = new Nested().nestedField
 ^
14: error: value nested cannot be accessed in scopeA.PrivateClass1
 val privateNField = privateClass1.nested.nestedField
 ^
two errors found

Now nestedField is visible to PrivateClass1, but it is still invisible outside of Private
Class1. This is how private works in Java.

Let’s examine scoping using a package name:

// code-examples/BasicOOP/scoping/private-pkg-type-wont-compile.scala
// WON'T COMPILE

package scopeA {
 private[scopeA] class PrivateClass1

 package scopeA2 {
 private [scopeA2] class PrivateClass2
 private [scopeA] class PrivateClass3
 }

 class PrivateClass4 extends PrivateClass1
 protected class PrivateClass5 extends PrivateClass1
 private class PrivateClass6 extends PrivateClass1
 private[this] class PrivateClass7 extends PrivateClass1

 private[this] class PrivateClass8 extends scopeA2.PrivateClass2 // ERROR
 private[this] class PrivateClass9 extends scopeA2.PrivateClass3
}

package scopeB {
 class PrivateClass1B extends scopeA.PrivateClass1 // ERROR
}

Compiling this file yields the following output:

14: error: class PrivateClass2 cannot be accessed in package scopeA.scopeA2
 private[this] class PrivateClass8 extends scopeA2.PrivateClass2
 ^
19: error: class PrivateClass1 cannot be accessed in package scopeA

108 | Chapter 5: Basic Object-Oriented Programming in Scala

 class PrivateClass1B extends scopeA.PrivateClass1
 ^
two errors found

Note that PrivateClass2 can’t be subclassed outside of scopeA2, but PrivateClass3 can
be subclassed in scopeA, because it is declared private[scopeA].

Finally, let’s look at the effect of package-level scoping of type members:

// code-examples/BasicOOP/scoping/private-pkg-wont-compile.scala
// WON'T COMPILE

package scopeA {
 class PrivateClass1 {
 private[scopeA] val privateField = 1

 class Nested {
 private[scopeA] val nestedField = 1
 }

 private[scopeA] val nested = new Nested
 }

 class PrivateClass2 extends PrivateClass1 {
 val field = privateField
 val nField = new Nested().nestedField
 }

 class PrivateClass3 {
 val privateClass1 = new PrivateClass1
 val privateField = privateClass1.privateField
 val privateNField = privateClass1.nested.nestedField
 }

 package scopeA2 {
 class PrivateClass4 {
 private[scopeA2] val field1 = 1
 private[scopeA] val field2 = 2
 }
 }

 class PrivateClass5 {
 val privateClass4 = new scopeA2.PrivateClass4
 val field1 = privateClass4.field1 // ERROR
 val field2 = privateClass4.field2
 }
}

package scopeB {
 class PrivateClass1B extends scopeA.PrivateClass1 {
 val field1 = privateField // ERROR
 val privateClass1 = new scopeA.PrivateClass1
 val field2 = privateClass1.privateField // ERROR
 }
}

Visibility Rules | 109

Compiling this file yields the following output:

28: error: value field1 cannot be accessed in scopeA.scopeA2.PrivateClass4
 val field1 = privateClass4.field1
 ^
35: error: not found: value privateField
 val field1 = privateField
 ^
37: error: value privateField cannot be accessed in scopeA.PrivateClass1
 val field2 = privateClass1.privateField
 ^
three errors found

The only errors are when we attempt to access members scoped to scopeA from the
unrelated package scopeB and when we attempt to access a member from a nested
package scopeA2 that is scoped to that package.

When a type or member is declared private[P], where P is the enclosing
package, then it is equivalent to Java’s package private visibility.

Final Thoughts on Visibility
Scala visibility declarations are very flexible, and they behave consistently. They provide
fine-grained control over visibility at all possible scopes, from the instance level
(private[this]) up to package-level visibility (private[P], for a package P). For exam-
ple, they make it easier to create “components” with types exposed outside of the
component’s top-level package, while hiding implementation types and type members
within the “component’s” packages.

Finally, we have observed a potential “gotcha” with hidden members of traits.

Be careful when choosing the names of members of traits. If two traits
have a member of the same name and the traits are used in the same
instance, a name collision will occur even if both members are private.

Fortunately, the compiler catches this problem.

Recap and What’s Next
We introduced the basics of Scala’s object model, including constructors, inheritance,
nesting of classes, and rules for visibility.

In the next chapter we’ll explore Scala’s more advanced OOP features, including over-
riding, companion objects, case classes, and rules for equality between objects.

110 | Chapter 5: Basic Object-Oriented Programming in Scala

CHAPTER 6

Advanced Object-Oriented
Programming In Scala

We’ve got the basics of OOP in Scala under our belt, but there’s plenty more to learn.

Overriding Members of Classes and Traits
Classes and traits can declare abstract members: fields, methods, and types. These
members must be defined by a derived class or trait before an instance can be created.
Most object-oriented languages support abstract methods, and some also support ab-
stract fields and types.

When overriding a concrete member, Scala requires the override key-
word. It is optional when a subtype defines (“overrides”) an abstract
member. Conversely, don’t use override unless you are actually over-
riding a member.

Requiring the override keyword has several benefits:

• It catches misspelled members that were intended to be overrides. The compiler
will throw an error that the member doesn’t override anything.

• It catches a potentially subtle bug that can occur if a new member is added to a
base class where the member’s name collides with an older derived class member
that is unknown to the base class developer. That is, the derived-class member was
never intended to override a base-class member. Because the derived class member
won’t have the override keyword, the compiler will throw an error when the new
base-class member is introduced.

• Having to add the keyword reminds you to consider what members should or
should not be overridden.

111

Java has an optional @Override annotation for methods. It helps catch errors of the first
type (misspellings), but it can’t help with errors of the second type, since using the
annotation is optional.

Attempting to Override final Declarations
However, if a declaration includes the final keyword, then overriding the declaration
is prohibited. In the following example, the fixedMethod is declared final in the parent
class. Attempting to compile the example will result in a compilation error:

// code-examples/AdvOOP/overrides/final-member-wont-compile.scala
// WON'T COMPILE.

class NotFixed {
 final def fixedMethod = "fixed"
}

class Changeable2 extends NotFixed {
 override def fixedMethod = "not fixed" // ERROR
}

This constraint applies to classes and traits as well as members. In this example, the
class Fixed is declared final, so an attempt to derive a new type from it will also fail to
compile:

// code-examples/AdvOOP/overrides/final-class-wont-compile.scala
// WON'T COMPILE.

final class Fixed {
 def doSomething = "Fixed did something!"
}

class Changeable1 extends Fixed // ERROR

Some of the types in the Scala library are final, including JDK classes
like String and all the “value” types derived from AnyVal (see “The Scala
Type Hierarchy” on page 155).

For declarations that aren’t final, let’s examine the rules and behaviors for overriding,
starting with methods.

Overriding Abstract and Concrete Methods
Let’s extend our familiar Widget base class with an abstract method draw, to support
“rendering” the widget to a display, web page, etc. We’ll also override a concrete
method familiar to any Java programmer, toString(), using an ad hoc format. As be-
fore, we will use a new package, ui3.

112 | Chapter 6: Advanced Object-Oriented Programming In Scala

Drawing is actually a cross-cutting concern. The state of a Widget is one
thing; how it is rendered on different platforms, thick clients, web pages,
mobile devices, etc., is a separate issue. So, drawing is a very good can-
didate for a trait, especially if you want your GUI abstractions to be
portable. However, to keep things simple, we will handle drawing in the
Widget hierarchy itself.

Here is the revised Widget class, with draw and toString methods:

// code-examples/AdvOOP/ui3/widget.scala

package ui3

abstract class Widget {
 def draw(): Unit
 override def toString() = "(widget)"
}

The draw method is abstract because it has no body; that is, the method isn’t followed
by an equals sign (=), nor any text after it. Therefore, Widget has to be declared
abstract (it was optional before). Each concrete subclass of Widget will have to imple-
ment draw or rely on a parent class that implements it. We don’t need to return anything
from draw, so its return value is Unit.

The toString() method is straightforward. Since AnyRef defines toString, the
override keyword is required for Widget.toString.

Here is the revised Button class, with draw and toString methods:

// code-examples/AdvOOP/ui3/button.scala

package ui3

class Button(val label: String) extends Widget with Clickable {

 def click() = {
 // Logic to give the appearance of clicking a button...
 }

 def draw() = {
 // Logic to draw the button on the display, web page, etc.
 }

 override def toString() =
 "(button: label=" + label + ", " + super.toString() + ")"
}

Button implements the abstract method draw. No override keyword is required.
Button also overrides toString, so the override keyword is required. Note that
super.toString is called.

Overriding Members of Classes and Traits | 113

The super keyword is analogous to this, but it binds to the parent type, which is the
aggregation of the parent class and any mixed-in traits. The search for
super.toString will find the “closest” parent type toString, as determined by the
linearization process (see “Linearization of an Object’s Hierarchy” on page 159). In
this case, since Clickable doesn’t define toString, Widget.toString will be called.

Overriding a concrete method should be done rarely, because it is error-
prone. Should you invoke the parent method? If so, when? Do you call
it before doing anything else, or afterward? While the writer of the pa-
rent method might document the overriding constraints for the method,
it’s difficult to ensure that the writer of a derived class will honor those
constraints. A much more robust approach is the Template Method Pat-
tern (see [GOF1995]).

Overriding Abstract and Concrete Fields
Most object-oriented languages allow you to override mutable fields (var). Fewer OO
languages allow you to define abstract fields or override concrete immutable fields
(val). For example, it’s common for a base class constructor to initialize a mutable field
and for a derived class constructor to change its value.

We’ll discuss overriding fields in traits and classes separately, as traits have some par-
ticular issues.

Overriding Abstract and Concrete Fields in Traits
Recall our VetoableClicks trait in “Stackable Traits” on page 82. It defines a val named
maxAllowed and initializes it to 1. We would like the ability to override the value in a
class that mixes in this trait.

Unfortunately, in Scala version 2.7.X, it is not possible to override a val defined in a
trait. However it is possible to override a val defined in a parent class. Version 2.8 of
Scala does support overriding a val in a trait.

Because the override behavior for a val in a trait is changing, you should
avoid relying on the ability to override it, if you are currently using Scala
version 2.7.X. Use another approach instead.

Unfortunately, the version 2.7 compiler accepts code that attempts to override a trait-
defined val, but the override does not actually happen, as illustrated by this example:

// code-examples/AdvOOP/overrides/trait-val-script.scala
// DANGER! Silent failure to override a trait's "name" (V2.7.5 only).
// Works as expected in V2.8.0.

114 | Chapter 6: Advanced Object-Oriented Programming In Scala

trait T1 {
 val name = "T1"
}

class Base

class ClassWithT1 extends Base with T1 {
 override val name = "ClassWithT1"
}

val c = new ClassWithT1()
println(c.name)

class ClassExtendsT1 extends T1 {
 override val name = "ClassExtendsT1"
}

val c2 = new ClassExtendsT1()
println(c2.name)

If you run this script with scala version 2.7.5, the output is the following:

T1
T1

Reading the script, we would have expected the two T1 strings to be ClassWithT1 and
ClassExtendsT1, respectively.

However, if you run this script with scala version 2.8.0, you get this output:

ClassWithT1
ClassExtendsT1

Attempts to override a trait-defined val will be accepted by the compiler,
but have no effect in Scala version 2.7.X.

There are three workarounds you can use with Scala version 2.7. The first is to use some
advanced options for scala and scalac. The -Xfuture option will enable the override
behavior supported in version 2.8. The -Xcheckinit option will analyze your code and
report whether the behavior change will break it. The option -Xexperimental, which
enables many experimental changes, will also warn you that the val override
behavior is different.

The second workaround is to make the val abstract in the trait. This forces an instance
using the trait to assign a value. Declaring a val in a trait abstract is a perfectly useful
design approach for both versions of Scala. In fact, this will be the best design choice,
when there is no appropriate default value to assign to the val in the trait:

// code-examples/AdvOOP/overrides/trait-abs-val-script.scala

trait AbstractT1 {
 val name: String

Overriding Members of Classes and Traits | 115

}

class Base

class ClassWithAbstractT1 extends Base with AbstractT1 {
 val name = "ClassWithAbstractT1"
}

val c = new ClassWithAbstractT1()
println(c.name)

class ClassExtendsAbstractT1 extends AbstractT1 {
 val name = "ClassExtendsAbstractT1"
}

val c2 = new ClassExtendsAbstractT1()
println(c2.name)

This script produces the output that we would expect:

ClassWithAbstractT1
ClassExtendsAbstractT1

So, an abstract val works fine, unless the field is used in the trait body in a way that will
fail until the field is properly initialized. Unfortunately, the proper initialization won’t
occur until after the trait’s body has executed. Consider the following example:

// code-examples/AdvOOP/overrides/trait-invalid-init-val-script.scala
// ERROR: "value" read before initialized.

trait AbstractT2 {
 println("In AbstractT2:")
 val value: Int
 val inverse = 1.0/value // ???
 println("AbstractT2: value = "+value+", inverse = "+inverse)
}

val c2b = new AbstractT2 {
 println("In c2b:")
 val value = 10
}
println("c2b.value = "+c2b.value+", inverse = "+c2b.inverse)

While it appears that we are creating an instance of the trait with new
AbstractT2 ..., we are actually using an anonymous class that implicitly extends the
trait. This script shows what happens when inverse is calculated:

In AbstractT2:
AbstractT2: value = 0, inverse = Infinity
In c2b:
c2b.value = 10, inverse = Infinity

As you might expect, the inverse is calculated too early. Note that a divide by zero
exception isn’t thrown; the compiler recognizes the value is infinite, but it hasn’t ac-
tually “tried” the division yet!

116 | Chapter 6: Advanced Object-Oriented Programming In Scala

The behavior of this script is actually quite subtle. As an exercise, try selectively re-
moving (or commenting out) the different println statements, one at a time. Observe
what happens to the results. Sometimes inverse is initialized properly! (Hint: remove
the println("In c2b:") statement. Then try putting it back, but after the val value =
10 line.)

What this experiment really shows is that side effects (i.e., from the println statements)
can be unexpected and subtle, especially during initialization. It’s best to avoid them.

Scala provides two solutions to this problem: lazy values, which we discuss in “Lazy
Vals” on page 190, and pre-initialized fields, which is demonstrated in the following
refinement to the previous example:

// code-examples/AdvOOP/overrides/trait-pre-init-val-script.scala

trait AbstractT2 {
 println("In AbstractT2:")
 val value: Int
 val inverse = 1.0/value
 println("AbstractT2: value = "+value+", inverse = "+inverse)
}

val c2c = new {
 // Only initializations are allowed in pre-init. blocks.
 // println("In c2c:")
 val value = 10
} with AbstractT2

println("c2c.value = "+c2c.value+", inverse = "+c2c.inverse)

We instantiate an anonymous inner class, initializing the value field in the block, before
the with AbstractT2 clause. This guarantees that value is initialized before the body of
AbstractT2 is executed, as shown when you run the script:

In AbstractT2:
AbstractT2: value = 10, inverse = 0.1
c2c.value = 10, inverse = 0.1

Also, if you selectively remove any of the println statements, you get the same expected
and now predictable results.

Now let’s consider the second workaround we described earlier, changing the decla-
ration to var. This solution is more suitable if a good default value exists and you don’t
want to require instances that use the trait to always set the value. In this case, change
the val to a var, either a public var or a private var hidden behind reader and writer
methods. Either way, we can simply reassign the value in a derived trait or class.

Returning to our VetoableClicks example, here is the modified VetoableClicks trait
that uses a public var for maxAllowed:

Overriding Members of Classes and Traits | 117

// code-examples/AdvOOP/ui3/vetoable-clicks.scala

package ui3
import observer._

trait VetoableClicks extends Clickable {
 var maxAllowed = 1 // default
 private var count = 0
 abstract override def click() = {
 count += 1
 if (count <= maxAllowed)
 super.click()
 }
}

Here is a new specs object, ButtonClickableObserverVetoableSpec2, that demonstrates
changing the value of maxAllowed:

// code-examples/AdvOOP/ui3/button-clickable-observer-vetoable2-spec.scala
package ui3

import org.specs._
import observer._
import ui.ButtonCountObserver

object ButtonClickableObserverVetoableSpec2 extends Specification {
 "A Button Observer with Vetoable Clicks" should {
 "observe only the first 'maxAllowed' clicks" in {
 val observableButton =
 new Button("Okay") with ObservableClicks with VetoableClicks {
 maxAllowed = 2
 }
 observableButton.maxAllowed mustEqual 2
 val buttonClickCountObserver = new ButtonCountObserver
 observableButton.addObserver(buttonClickCountObserver)
 for (i <- 1 to 3) observableButton.click()
 buttonClickCountObserver.count mustEqual 2
 }
 }
}

No override var is required. We just assign a new value. Since the body of the trait is
executed before the body of the class using it, reassigning the field value happens
after the initial assignment in the trait’s body. However, as we saw before, that reas-
signment could happen too late if the field is used in the trait’s body in some calculation
that will become invalid by a reassignment later! You can avoid this problem if you
make the field private and define a public writer method that redoes any dependent
calculations.

Another disadvantage of using a var declaration is that maxAllowed was not intended to
be writable. As we will see in Chapter 8, read-only values have important benefits. We
would prefer for maxAllowed to be read-only, at least after the construction process
completes.

118 | Chapter 6: Advanced Object-Oriented Programming In Scala

We can see that the simple act of changing the val to a var causes potential problems
for the maintainer of VetoableClicks. Control over that field is now lost. The maintainer
must carefully consider whether or not the value will change and if a change will inva-
lidate the state of the instance. This issue is especially pernicious in multithreaded
systems (see “The Problems of Shared, Synchronized State” on page 193).

Avoid var fields when possible (in classes as well as traits). Consider
public var fields especially risky.

Overriding Abstract and Concrete Fields in Classes
In contrast to traits, overriding a val declared in a class works as expected. Here is an
example with both a val override and a var reassignment in a derived class:

// code-examples/AdvOOP/overrides/class-field-script.scala

class C1 {
 val name = "C1"
 var count = 0
}

class ClassWithC1 extends C1 {
 override val name = "ClassWithC1"
 count = 1
}

val c = new ClassWithC1()
println(c.name)
println(c.count)

The override keyword is required for the concrete val field name, but not for the var
field count. This is because we are changing the initialization of a constant (val), which
is a “special” operation.

If you run this script, the output is the following:

ClassWithC1
1

Both fields are overridden in the derived class, as expected. Here is the same example
modified so that both the val and the var are abstract in the base class:

// code-examples/AdvOOP/overrides/class-abs-field-script.scala

abstract class AbstractC1 {
 val name: String
 var count: Int
}

class ClassWithAbstractC1 extends AbstractC1 {
 val name = "ClassWithAbstractC1"

Overriding Members of Classes and Traits | 119

 var count = 1
}

val c = new ClassWithAbstractC1()
println(c.name)
println(c.count)

The override keyword is not required for name in ClassWithAbstractC1, since the orig-
inal declaration is abstract. The output of this script is the following:

ClassWithAbstractC1
1

It’s important to emphasize that name and count are abstract fields, not concrete fields
with default values. A similar-looking declaration of name in a Java class,
String name;, would declare a concrete field with the default value (null in this case).
Java doesn’t support abstract fields or types (as we’ll discuss next), only methods.

Overriding Abstract Types
We introduced abstract type declarations in “Abstract Types And Parameterized
Types” on page 47. Recall the BulkReader example from that section:

// code-examples/TypeLessDoMore/abstract-types-script.scala

import java.io._

abstract class BulkReader {
 type In
 val source: In
 def read: String
}

class StringBulkReader(val source: String) extends BulkReader {
 type In = String
 def read = source
}

class FileBulkReader(val source: File) extends BulkReader {
 type In = File
 def read = {
 val in = new BufferedInputStream(new FileInputStream(source))
 val numBytes = in.available()
 val bytes = new Array[Byte](numBytes)
 in.read(bytes, 0, numBytes)
 new String(bytes)
 }
}

println(new StringBulkReader("Hello Scala!").read)
println(new FileBulkReader(new File("abstract-types-script.scala")).read)

120 | Chapter 6: Advanced Object-Oriented Programming In Scala

Abstract types are an alternative to parameterized types, which we’ll explore in “Un-
derstanding Parameterized Types” on page 249. Like parameterized types, they pro-
vide an abstraction mechanism at the type level.

The example shows how to declare an abstract type and how to define a concrete value
in derived classes. BulkReader declares type In without initializing it. The concrete
derived class StringBulkReader provides a concrete value using type In = String.

Unlike fields and methods, it is not possible to override a concrete type definition.
However, the abstract declaration can constrain the allowed concrete type values. We’ll
learn how in Chapter 12.

Finally, you probably noticed that this example also demonstrates defining an abstract
field, using a constructor parameter, and an abstract method.

For another example, let’s revisit our Subject trait from “Traits As Mix-
ins” on page 76. The definition of the Observer type is a structural type with a method
named receiveUpdate. Observers must have this “structure.” Let’s generalize the im-
plementation now, using an abstract type:

// code-examples/AdvOOP/observer/observer2.scala

package observer

trait AbstractSubject {
 type Observer

 private var observers = List[Observer]()
 def addObserver(observer:Observer) = observers ::= observer
 def notifyObservers = observers foreach (notify(_))

 def notify(observer: Observer): Unit
}

trait SubjectForReceiveUpdateObservers extends AbstractSubject {
 type Observer = { def receiveUpdate(subject: Any) }

 def notify(observer: Observer): Unit = observer.receiveUpdate(this)
}

trait SubjectForFunctionalObservers extends AbstractSubject {
 type Observer = (AbstractSubject) => Unit

 def notify(observer: Observer): Unit = observer(this)
}

Now, AbstractSubject declares type Observer as abstract (implicitly, because there is
no definition). Since the original structural type is gone, we don’t know exactly how to
notify an observer. So, we also added an abstract method notify, which a concrete class
or trait will define as appropriate.

Overriding Members of Classes and Traits | 121

The SubjectForReceiveUpdateObservers derived trait defines Observer with the same
structural type we used in the original example, and notify simply calls
receiveUpdate, as before.

The SubjectForFunctionalObservers derived trait defines Observer to be a function
taking an instance of AbstractSubject and returning Unit. All notify has to do is call
the observer function, passing the subject as the sole argument. Note that this imple-
mentation is similar to the approach we used in our original button implementation,
ButtonWithCallbacks, where the “callbacks” were user-supplied functions. (See “Intro-
ducing Traits” on page 75 and a revisited version in “Constructors in Scala”
on page 91.)

Here is a specification that exercises these two variations, observing button clicks as
before:

// code-examples/AdvOOP/observer/button-observer2-spec.scala

package ui
import org.specs._
import observer._

object ButtonObserver2Spec extends Specification {
 "An Observer watching a SubjectForReceiveUpdateObservers button" should {
 "observe button clicks" in {
 val observableButton =
 new Button(name) with SubjectForReceiveUpdateObservers {
 override def click() = {
 super.click()
 notifyObservers
 }
 }
 val buttonObserver = new ButtonCountObserver
 observableButton.addObserver(buttonObserver)
 for (i <- 1 to 3) observableButton.click()
 buttonObserver.count mustEqual 3
 }
 }
 "An Observer watching a SubjectForFunctionalObservers button" should {
 "observe button clicks" in {
 val observableButton =
 new Button(name) with SubjectForFunctionalObservers {
 override def click() = {
 super.click()
 notifyObservers
 }
 }
 var count = 0
 observableButton.addObserver((button) => count += 1)
 for (i <- 1 to 3) observableButton.click()
 count mustEqual 3
 }
 }
}

122 | Chapter 6: Advanced Object-Oriented Programming In Scala

First we exercise SubjectForReceiveUpdateObservers, which looks very similar to our
earlier examples. Next we exercise SubjectForFunctionalObservers. In this case, we
don’t need another “observer” instance at all. We just maintain a count variable and
pass a function literal to addObserver to increment the count (and ignore the button).

The main virtue of SubjectForFunctionalObservers is its minimalism. It requires no
special instances, no traits defining abstractions, etc. For many cases, it is an ideal
approach.

AbstractSubject is more reusable than the original definition of Subject, because it
imposes fewer constraints on potential observers.

AbstractSubject illustrates that an abstraction with fewer concrete de-
tails is usually more reusable.

But wait, there’s more! We’ll revisit the use of abstract types and the Observer Pattern
in “Scalable Abstractions” on page 313.

When Accessor Methods and Fields Are Indistinguishable: The Uniform
Access Principle
Suppose a user of ButtonCountObserver from “Traits As Mixins” on page 76 accesses
the count member:

// code-examples/Traits/ui/button-count-observer-script.scala

val bco = new ui.ButtonCountObserver
val oldCount = bco.count
bco.count = 5
val newCount = bco.count
println(newCount + " == 5 and " + oldCount + " == 0?")

When the count field is read or written, as in this example, are methods called or is the
field accessed directly? As originally declared in ButtonCountObserver, the field is ac-
cessed directly. However, the user doesn’t really care. In fact, the following two defi-
nitions are functionally equivalent, from the perspective of the user:

class ButtonCountObserver {
 var count = 0 // public field access (original definition)
 // ...
}

class ButtonCountObserver {
 private var cnt = 0 // private field
 def count = cnt // reader method
 def count_=(newCount: Int) = cnt = newCount // writer method
 // ...
}

Overriding Members of Classes and Traits | 123

This equivalence is an example of the Uniform Access Principle. Clients read and write
field values as if they are publicly accessible, even though in some cases they are actually
calling methods. The maintainer of ButtonCountObserver has the freedom to change the
implementation without forcing users to make code changes.

The reader method in the second version does not have parentheses. Recall that con-
sistency in the use of parentheses is required if a method definition omits parentheses.
This is only possible if the method takes no arguments. For the Uniform Access Prin-
ciple to work, we want to define field reader methods without parentheses. (Contrast
that with Ruby, where method parentheses are always optional as long as the parse is
unambiguous.)

The writer method has the format count_=(...). As a bit of syntactic sugar, the compiler
allows invocations of methods with this format to be written in either of the following
ways:

obj.field_=(newValue)
// or
obj.field = newValue

We named the private variable cnt in the alternative definition. Scala keeps field and
method names in the same namespace, which means we can’t name the field count if a
method is named count. Many languages, like Java, don’t have this restriction because
they keep field and method names in separate namespaces. However, these languages
can’t support the Uniform Access Principle as a result, unless they build in ad hoc
support in their grammars or compilers.

Since member object definitions behave similar to fields from the caller’s perspective,
they are also in the same namespace as methods and fields. Hence, the following class
would not compile:

// code-examples/AdvOOP/overrides/member-namespace-wont-compile.scala
// WON'T COMPILE

class IllegalMemberNameUse {
 def member(i: Int) = 2 * i
 val member = 2 // ERROR
 object member { // ERROR
 def apply() = 2
 }
}

There is one other benefit of this namespace “unification.” If a parent class declares a
parameterless method, then a subclass can override that method with a val. If the
parent’s method is concrete, then the override keyword is required:

// code-examples/AdvOOP/overrides/method-field-class-script.scala

class Parent {
 def name = "Parent"
}

124 | Chapter 6: Advanced Object-Oriented Programming In Scala

class Child extends Parent {
 override val name = "Child"
}

println(new Child().name) // => "Child"

If the parent’s method is abstract, then the override keyword is optional:

// code-examples/AdvOOP/overrides/abs-method-field-class-script.scala

abstract class AbstractParent {
 def name: String
}

class ConcreteChild extends AbstractParent {
 val name = "Child"
}

println(new ConcreteChild().name) // => "Child"

This also works for traits. If the trait’s method is concrete, we have the following:

// code-examples/AdvOOP/overrides/method-field-trait-script.scala

trait NameTrait {
 def name = "NameTrait"
}

class ConcreteNameClass extends NameTrait {
 override val name = "ConcreteNameClass"
}

println(new ConcreteNameClass().name) // => "ConcreteNameClass"

If the trait’s method is abstract, we have the following:

// code-examples/AdvOOP/overrides/abs-method-field-trait-script.scala

trait AbstractNameTrait {
 def name: String
}

class ConcreteNameClass extends AbstractNameTrait {
 val name = "ConcreteNameClass"
}

println(new ConcreteNameClass().name) // => "ConcreteNameClass"

Why is this feature useful? It allows derived classes and traits to use a simple field access
when that is sufficient, or a method call when more processing is required, such as lazy
initialization. The same argument holds for the Uniform Access Principle, in general.

Overriding a def with a val in a subclass can also be handy when interoperating with
Java code. Turn a getter into a val by placing it in the constructor. You’ll see this in
action in the following example, in which our Scala class Person implements a hypo-
thetical PersonInterface from some legacy Java code:

Overriding Members of Classes and Traits | 125

class Person(val getName: String) extends PersonInterface

If you only have a few accessors in the Java code you’re integrating with, this technique
makes quick work of them.

What about overriding a parameterless method with a var, or overriding a val or var
with a method? These are not permitted because they can’t match the behaviors of the
things they are overriding.

If you attempt to use a var to override a parameterless method, you get an error that
the writer method, override name_=, is not overriding anything. This would also be
inconsistent with a philosophical goal of functional programming, that a method that
takes no parameters should always return the same result. To do otherwise would
require side effects in the implementation, which functional programming tries to
avoid, for reasons we will examine in Chapter 8. Because a var is changeable, the no-
parameter “method” defined in the parent type would no longer return the same result
consistently.

If you could override a val with a method, there would be no way for Scala to guarantee
that the method would always return the same value, consistent with val semantics.
That issue doesn’t exist with a var, of course, but you would have to override the var
with two methods, a reader and a writer. The Scala compiler doesn’t support that
substitution.

Companion Objects
Recall that fields and methods defined in objects serve the role that class “static” fields
and methods serve in languages like Java. When object-based fields and methods are
closely associated with a particular class, they are normally defined in a companion
object.

We mentioned companion objects briefly in Chapter 1, and we discussed the Pair
example from the Scala library in Chapter 2. Let’s fill in the remaining details now.

First, recall that if a class (or a type referring to a class) and an object are declared in
the same file, in the same package, and with the same name, they are called a companion
class (or companion type) and a companion object, respectively.

There is no namespace collision when the name is reused in this way, because Scala
stores the class name in the type namespace, while it stores the object name in the term
namespace (see [ScalaSpec2009]).

The two most interesting methods frequently defined in a companion object are
apply and unapply.

126 | Chapter 6: Advanced Object-Oriented Programming In Scala

Apply
Scala provides some syntactic sugar in the form of the apply method. When an instance
of a class is followed by parentheses with a list of zero or more parameters, the compiler
invokes the apply method for that instance. This is true for an object with a defined
apply method (such as a companion object), as well as an instance of a class that defines
an apply method.

In the case of an object, apply is conventionally used as a factory method, returning a
new instance. This is what Pair.apply does in the Scala library. Here is Pair from the
standard library:

type Pair[+A, +B] = Tuple2[A, B]
object Pair {
 def apply[A, B](x: A, y: B) = Tuple2(x, y)
 def unapply[A, B](x: Tuple2[A, B]): Option[Tuple2[A, B]] = Some(x)
}

So, you can create a new Pair as follows:

val p = Pair(1, "one")

It looks like we are somehow creating a Pair instance without a new. Rather than calling
a Pair constructor directly, we are actually calling Pair.apply (i.e., the companion ob-
ject Pair), which then calls Tuple2.apply on the Tuple2 companion object!

If there are several alternative constructors for a class and it also has a
companion object, consider defining fewer constructors on the class and
defining several overloaded apply methods on the companion object to
handle the variations.

However, apply is not limited to instantiating the companion class. It could instead
return an instance of a subclass of the companion class. Here is an example where we
define a companion object Widget that uses regular expressions to parse a string rep-
resenting a Widget subclass. When a match occurs, the subclass is instantiated and the
new instance is returned:

// code-examples/AdvOOP/objects/widget.scala

package objects

abstract class Widget {
 def draw(): Unit
 override def toString() = "(widget)"
}

object Widget {
 val ButtonExtractorRE = """\(button: label=([^,]+),\s+\(Widget\)\)""".r
 val TextFieldExtractorRE = """\(textfield: text=([^,]+),\s+\(Widget\)\)""".r

 def apply(specification: String): Option[Widget] = specification match {

Companion Objects | 127

 case ButtonExtractorRE(label) => new Some(new Button(label))
 case TextFieldExtractorRE(text) => new Some(new TextField(text))
 case _ => None
 }
}

Widget.apply receives a string “specification” that defines which class to instantiate.
The string might come from a configuration file with widgets to create at startup, for
example. The string format is the same format used by toString(). Regular expressions
are defined for each type. (Parser combinators are an alternative. They are discussed in
“External DSLs with Parser Combinators” on page 230.)

The match expression applies each regular expression to the string. A case expression
like:

case ButtonExtractorRE(label) => new Some(new Button(label))

means that the string is matched against the ButtonExtractorRE regular expression. If
successful, it extracts the substring in the first capture group in the regular expression
and assigns it to the variable label. Finally, a new Button with this label is created,
wrapped in a Some. We’ll learn how this extraction process works in the next section,
“Unapply” on page 129.

A similar case handles TextField creation. (TextField is not shown. See the online code
examples.) Finally, if apply can’t match the string, it returns None.

Here is a specs object that exercises Widget.apply:

// code-examples/AdvOOP/objects/widget-apply-spec.scala

package objects
import org.specs._

object WidgetApplySpec extends Specification {
 "Widget.apply with a valid widget specification string" should {
 "return a widget instance with the correct fields set" in {
 Widget("(button: label=click me, (Widget))") match {
 case Some(w) => w match {
 case b:Button => b.label mustEqual "click me"
 case x => fail(x.toString())
 }
 case None => fail("None returned.")
 }
 Widget("(textfield: text=This is text, (Widget))") match {
 case Some(w) => w match {
 case tf:TextField => tf.text mustEqual "This is text"
 case x => fail(x.toString())
 }
 case None => fail("None returned.")
 }
 }
 }
 "Widget.apply with an invalid specification string" should {
 "return None" in {

128 | Chapter 6: Advanced Object-Oriented Programming In Scala

 Widget("(button: , (Widget)") mustEqual None
 }
 }
}

The first match statement implicitly invokes Widget.apply with the string "(button:
label=click me, (Widget))". If a button wrapped in a Some is not returned with the
label "click me", this test will fail. Next, a similar test for a TextField widget is done.
The final test uses an invalid string and confirms that None is returned.

A drawback of this particular implementation is that we have hardcoded a dependency
on each derived class of Widget in Widget itself, which breaks the Open-Closed Princi-
ple (see [Meyer1997] and [Martin2003]). A better implementation would use a factory
design pattern from [GOF1995]. Nevertheless, the example illustrates how an apply
method can be used as a real factory.

There is no requirement for apply in an object to be used as a factory. Neither is there
any restriction on the argument list or what apply returns. However, because it is so
common to use apply in an object as a factory, use caution when using apply for other
purposes, as it could confuse users. However, there are good counterexamples, such
as the use of apply in Domain-Specific Languages (see Chapter 11).

The factory convention is less commonly used for apply defined in classes. For example,
in the Scala standard library, Array.apply(i: int) returns the element at index i in the
array. Many of the other collections use apply in a similar way. So, users can write code
like the following:

val a = Array(1,2,3,4)
println(a(2)) // => 3

Finally, as a reminder, although apply is handled specially by the compiler, it is other-
wise no different from any other method. You can overload it, you can invoke it directly,
etc.

Unapply
The name unapply suggests that it does the “opposite” operation of apply. Indeed, it is
used to extract the constituent parts of an instance. Pattern matching uses this feature
extensively. Hence, unapply is often defined in companion objects and is used to extract
the field values from instances of the corresponding companion types. For this reason,
unapply methods are called extractors.

Here is an expanded button.scala with a Button object that defines an unapply extractor
method:

// code-examples/AdvOOP/objects/button.scala

package objects
import ui3.Clickable

class Button(val label: String) extends Widget with Clickable {

Companion Objects | 129

 def click() = {
 // Logic to give the appearance of clicking a button...
 }

 def draw() = {
 // Logic to draw the button on the display, web page, etc.
 }

 override def toString() = "(button: label="+label+", "+super.toString()+")"
}

object Button {
 def unapply(button: Button) = Some(button.label)
}

Button.unapply takes a single Button argument and returns a Some wrapping the label
value. This demonstrates the protocol for unapply methods. They return a Some wrap-
ping the extracted fields. (We’ll see how to handle more than one field in a moment.)

Here is a specs object that exercises Button.unapply:

// code-examples/AdvOOP/objects/button-unapply-spec.scala

package objects
import org.specs._

object ButtonUnapplySpec extends Specification {
 "Button.unapply" should {
 "match a Button object" in {
 val b = new Button("click me")
 b match {
 case Button(label) =>
 case _ => fail()
 }
 }
 "match a RadioButton object" in {
 val b = new RadioButton(false, "click me")
 b match {
 case Button(label) =>
 case _ => fail()
 }
 }
 "not match a non-Button object" in {
 val tf = new TextField("hello world!")
 tf match {
 case Button(label) => fail()
 case _ =>
 }
 }
 "extract the Button's label" in {
 val b = new Button("click me")
 b match {
 case Button(label) => label mustEqual "click me"
 case _ => fail()
 }

130 | Chapter 6: Advanced Object-Oriented Programming In Scala

 }
 "extract the RadioButton's label" in {
 val rb = new RadioButton(false, "click me, too")
 rb match {
 case Button(label) => label mustEqual "click me, too"
 case _ => fail()
 }
 }
 }
}

The first three examples (in clauses) confirm that Button.unapply is only called for
actual Button instances or instances of derived classes, like RadioButton.

Since unapply takes a Button argument (in this case), the Scala runtime type checks the
instance being matched. It then looks for a companion object with an unapply method
and invokes that method, passing the instance. The default case clause case _ is invoked
for the instances that don’t type check as compatible. The pattern matching process is
fully type-safe.

The remaining examples (in clauses) confirm that the correct values for the label are
extracted. The Scala runtime automatically extracts the item in the Some.

What about extracting multiple fields? For a fixed set of known fields, a Some wrapping
a Tuple is returned, as shown in this updated version of RadioButton:

// code-examples/AdvOOP/objects/radio-button.scala

package objects

/**
 * Button with two states, on or off, like an old-style,
 * channel-selection botton on a radio.
 */
class RadioButton(val on: Boolean, label: String) extends Button(label)

object RadioButton {
 def unapply(button: RadioButton) = Some((button.on, button.label))
 // equivalent to: = Some(Pair(button.on, button.label))
}

A Some wrapping a Pair(button.on, button.label) is returned. As we discuss in “The
Predef Object” on page 145, Pair is a type defined to be equal to Tuple2. Here is the
corresponding specs object that tests it:

// code-examples/AdvOOP/objects/radio-button-unapply-spec.scala

package objects
import org.specs._

object RadioButtonUnapplySpec extends Specification {
 "RadioButton.unapply" should {
 "should match a RadioButton object" in {
 val b = new RadioButton(true, "click me")
 b match {

Companion Objects | 131

 case RadioButton(on, label) =>
 case _ => fail()
 }
 }
 "not match a Button (parent class) object" in {
 val b = new Button("click me")
 b match {
 case RadioButton(on, label) => fail()
 case _ =>
 }
 }
 "not match a non-RadioButton object" in {
 val tf = new TextField("hello world!")
 tf match {
 case RadioButton(on, label) => fail()
 case _ =>
 }
 }
 "extract the RadioButton's on/off state and label" in {
 val b = new RadioButton(true, "click me")
 b match {
 case RadioButton(on, label) => {
 label mustEqual "click me"
 on mustEqual true
 }
 case _ => fail()
 }
 }
 }
}

Apply and UnapplySeq for Collections
What if you want to build a collection from a variable argument list passed to apply?
What if you want to extract the first few elements from a collection and you don’t care
about the rest of it?

In this case, you define apply and unapplySeq (“unapply sequence”) methods. Here are
those methods from Scala’s own List class:

def apply[A](xs: A*): List[A] = xs.toList

def unapplySeq[A](x: List[A]): Some[List[A]] = Some(x)

The [A] type parameterization on these methods allows the List object, which is not
parameterized, to construct a new List[A]. (See “Understanding Parameterized
Types” on page 249 for more details.) Most of the time, the type parameter will be
inferred based on the context.

The parameter list xs: A* is a variable argument list. Callers of apply can pass as many
A instances as they want, including none. Internally, variable argument lists are stored
in an Array[A], which inherits the toList method from Iterable that we used here.

132 | Chapter 6: Advanced Object-Oriented Programming In Scala

This is a handy idiom for API writers. Accepting variable arguments to
a function can be convenient for users, and converting the arguments
to a List is often ideal for internal management.

Here is an example script that uses List.apply implicitly:

// code-examples/AdvOOP/objects/list-apply-example-script.scala

val list1 = List()
val list2 = List(1, 2.2, "three", 'four)
val list3 = List("1", "2.2", "three", "four")
println("1: "+list1)
println("2: "+list2)
println("3: "+list3)

The 'four is a symbol, essentially an interned string. Symbols are more commonly used
in Ruby, for example, where the same symbol would be written as :four. Symbols are
useful for representing identities consistently.

This script yields the following output:

1: List()
2: List(1, 2.2, three, 'four)
3: List(1, 2.2, three, four)

The unapplySeq method is trivial; it returns the input list wrapped in a Some. However,
this is sufficient for pattern matching, as shown in this example:

// code-examples/AdvOOP/objects/list-unapply-example-script.scala

val list = List(1, 2.2, "three", 'four)
list match {
 case List(x, y, _*) => println("x = "+x+", y = "+y)
 case _ => throw new Exception("No match! "+list)
}

The List(x, y, _*) syntax means we will only match on a list with at least two elements,
and the first two elements will be assigned to x and y. We don’t care about the rest of
the list. The _* matches zero or more remaining elements.

The output is the following:

x = 1, y = 2.2

We’ll have much more to say about List and pattern matching in “Lists in Functional
Programming” on page 173.

Companion Objects and Java Static Methods
There is one more thing to know about companion objects. Whenever you define a
main method to use as the entry point for an application, Scala requires you to put it in
an object. However, at the time of this writing, main methods cannot be defined in a

Companion Objects | 133

companion object. Because of implementation details in the generated code, the JVM
won’t find the main method. This issue may be resolved in a future release. For now,
you must define any main method in a singleton object (i.e., a “non-companion” object;
see [ScalaTips]). Consider the following example of a simple Person class and com-
panion object that attempts to define main:

// code-examples/AdvOOP/objects/person.scala

package objects

class Person(val name: String, val age: Int) {
 override def toString = "name: " + name + ", age: " + age
}

object Person {
 def apply(name: String, age: Int) = new Person(name, age)
 def unapply(person: Person) = Some((person.name, person.age))

 def main(args: Array[String]) = {
 // Test the constructor...
 val person = new Person("Buck Trends", 18)
 assert(person.name == "Buck Trends")
 assert(person.age == 21)
 }
}

object PersonTest {
 def main(args: Array[String]) = Person.main(args)
}

This code compiles fine, but if you attempt to invoke Person.main, using scala -cp ...
objects.Person, you get the following error:

java.lang.NoSuchMethodException: objects.Person.main([Ljava.lang.String;)

The objects/Person.class file exists. If you decompile it with javap -classpath ...
objects.Person (refer to “The scalap, javap, and jad Command-Line
Tools” on page 350), you can see that it doesn’t contain a main method. If you de-
compile objects/Person$.class, the file for the companion object’s byte code, it has a
main method, but notice that it isn’t declared static. So, attempting to invoke scala
-cp ... objects.Person$ also fails to find the “static” main:

java.lang.NoSuchMethodException: objects.Person$.main is not static

The separate singleton object PersonTest defined in this example has to be used. De-
compiling it with javap -classpath ... objects.PersonTest shows that it has a static
main method. If you invoke it using scala -cp ... objects.PersonTest, the PersonT
est.main method is invoked, which in turn invokes Person.main. You get an assertion
error from the second call to assert, which is intentional:

java.lang.AssertionError: assertion failed
 at scala.Predef$.assert(Predef.scala:87)
 at objects.Person$.test(person.scala:15)

134 | Chapter 6: Advanced Object-Oriented Programming In Scala

 at objects.PersonTest$.main(person.scala:20)
 at objects.PersonTest.main(person.scala)
 ...

In fact, this is a general issue with methods defined in companion objects that need to
be visible to Java code as static methods. They aren’t static in the byte code. You have
to put these methods in singleton objects instead. Consider the following Java class
that attempts to create a user with Person.apply:

// code-examples/AdvOOP/objects/PersonUserWontCompile.java
// WON'T COMPILE

package objects;

public class PersonUserWontCompile {
 public static void main(String[] args) {
 Person buck = Person.apply("Buck Trends", 100); // ERROR
 System.out.println(buck);
 }
}

If we compile it (after compiling Person.scala), we get the following error:

$ javac -classpath ... objects/PersonUserWontCompile.java
objects/PersonUserWontCompile.java:5: cannot find symbol
symbol : method apply(java.lang.String,int)
location: class objects.Person
 Person buck = Person.apply("Buck Trends", 100);
 ^
1 error

However, we can use the following singleton object:

// code-examples/AdvOOP/objects/person-factory.scala

package objects

object PersonFactory {
 def make(name: String, age: Int) = new Person(name, age)
}

Now the following Java class will compile:

// code-examples/AdvOOP/objects/PersonUser.java

package objects;

public class PersonUser {
 public static void main(String[] args) {
 // The following line won't compile.
 // Person buck = Person.apply("Buck Trends", 100);
 Person buck = PersonFactory.make("Buck Trends", 100);
 System.out.println(buck);
 }
}

Companion Objects | 135

Do not define main or any other method in a companion object that needs
to be visible to Java code as a static method. Define it in a singleton
object, instead.

If you have no other choice but to call a method in a companion object from Java, you
can explicitly create an instance of the object with new, since the object is a “regular”
Java class in the byte code, and call the method on the instance.

Case Classes
In “Matching on Case Classes” on page 67, we briefly introduced you to case classes.
Case classes have several useful features, but also some drawbacks.

Let’s rewrite the Shape example we used in “A Taste of Concurrency” on page 16 to
use case classes. Here is the original implementation:

// code-examples/IntroducingScala/shapes.scala

package shapes {
 class Point(val x: Double, val y: Double) {
 override def toString() = "Point(" + x + "," + y + ")"
 }

 abstract class Shape() {
 def draw(): Unit
 }

 class Circle(val center: Point, val radius: Double) extends Shape {
 def draw() = println("Circle.draw: " + this)
 override def toString() = "Circle(" + center + "," + radius + ")"
 }

 class Rectangle(val lowerLeft: Point, val height: Double, val width: Double)
 extends Shape {
 def draw() = println("Rectangle.draw: " + this)
 override def toString() =
 "Rectangle(" + lowerLeft + "," + height + "," + width + ")"
 }

 class Triangle(val point1: Point, val point2: Point, val point3: Point)
 extends Shape() {
 def draw() = println("Triangle.draw: " + this)
 override def toString() =
 "Triangle(" + point1 + "," + point2 + "," + point3 + ")"
 }
}

Here is the example rewritten using the case keyword:

// code-examples/AdvOOP/shapes/shapes-case.scala

package shapes {

136 | Chapter 6: Advanced Object-Oriented Programming In Scala

 case class Point(x: Double, y: Double)

 abstract class Shape() {
 def draw(): Unit
 }

 case class Circle(center: Point, radius: Double) extends Shape() {
 def draw() = println("Circle.draw: " + this)
 }

 case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape() {
 def draw() = println("Rectangle.draw: " + this)
 }

 case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape() {
 def draw() = println("Triangle.draw: " + this)
 }
}

Adding the case keyword causes the compiler to add a number of useful features au-
tomatically. The keyword suggests an association with case expressions in pattern
matching. Indeed, they are particularly well suited for that application, as we will see.

First, the compiler automatically converts the constructor arguments into immutable
fields (vals). The val keyword is optional. If you want mutable fields, use the var key-
word. So, our constructor argument lists are now shorter.

Second, the compiler automatically implements equals, hashCode, and toString meth-
ods to the class, which use the fields specified as constructor arguments. So, we no
longer need our own toString methods. In fact, the generated toString methods pro-
duce the same outputs as the ones we implemented ourselves. Also, the body of
Point is gone because there are no methods that we need to define!

The following script uses these methods that are now in the shapes:

// code-examples/AdvOOP/shapes/shapes-usage-example1-script.scala

import shapes._

val shapesList = List(
 Circle(Point(0.0, 0.0), 1.0),
 Circle(Point(5.0, 2.0), 3.0),
 Rectangle(Point(0.0, 0.0), 2, 5),
 Rectangle(Point(-2.0, -1.0), 4, 3),
 Triangle(Point(0.0, 0.0), Point(1.0, 0.0), Point(0.0, 1.0)))

val shape1 = shapesList.head // grab the first one.
println("shape1: "+shape1+". hash = "+shape1.hashCode)
for (shape2 <- shapesList) {
 println("shape2: "+shape2+". 1 == 2 ? "+(shape1 == shape2))
}

Case Classes | 137

This script outputs the following:

shape1: Circle(Point(0.0,0.0),1.0). hash = 2061963534
shape2: Circle(Point(0.0,0.0),1.0). 1 == 2 ? true
shape2: Circle(Point(5.0,2.0),3.0). 1 == 2 ? false
shape2: Rectangle(Point(0.0,0.0),2.0,5.0). 1 == 2 ? false
shape2: Rectangle(Point(-2.0,-1.0),4.0,3.0). 1 == 2 ? false
shape2: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0)). 1 == 2 ? false

As we’ll see in “Equality of Objects” on page 142, the == method actually invokes the
equals method.

Even outside of case expressions, automatic generation of these three methods is very
convenient for simple, “structural” classes, i.e., classes that contain relatively simple
fields and behaviors.

Third, when the case keyword is used, the compiler automatically creates a companion
object with an apply factory method that takes the same arguments as the primary
constructor. The previous example used the appropriate apply methods to create the
Points, the different Shapes, and also the List itself. That’s why we don’t need new;
we’re actually calling apply(x,y) in the Point companion object, for example.

You can have secondary constructors in case classes, but there will be
no overloaded apply method generated that has the same argument list.
You’ll have to use new to create instances with those constructors.

The companion object also gets an unapply extractor method, which extracts all the
fields of an instance in an elegant fashion. The following script demonstrates the ex-
tractors in pattern matching case statements:

// code-examples/AdvOOP/shapes/shapes-usage-example2-script.scala

import shapes._

val shapesList = List(
 Circle(Point(0.0, 0.0), 1.0),
 Circle(Point(5.0, 2.0), 3.0),
 Rectangle(Point(0.0, 0.0), 2, 5),
 Rectangle(Point(-2.0, -1.0), 4, 3),
 Triangle(Point(0.0, 0.0), Point(1.0, 0.0), Point(0.0, 1.0)))

def matchOn(shape: Shape) = shape match {
 case Circle(center, radius) =>
 println("Circle: center = "+center+", radius = "+radius)
 case Rectangle(ll, h, w) =>
 println("Rectangle: lower-left = "+ll+", height = "+h+", width = "+w)
 case Triangle(p1, p2, p3) =>
 println("Triangle: point1 = "+p1+", point2 = "+p2+", point3 = "+p3)
 case _ =>
 println("Unknown shape!"+shape)
}

138 | Chapter 6: Advanced Object-Oriented Programming In Scala

shapesList.foreach { shape => matchOn(shape) }

This script outputs the following:

Circle: center = Point(0.0,0.0), radius = 1.0
Circle: center = Point(5.0,2.0), radius = 3.0
Rectangle: lower-left = Point(0.0,0.0), height = 2.0, width = 5.0
Rectangle: lower-left = Point(-2.0,-1.0), height = 4.0, width = 3.0
Triangle: point1 = Point(0.0,0.0), point2 = Point(1.0,0.0), point3 = Point(0.0,1.0)

Syntactic Sugar for Binary Operations
By the way, remember in “Matching on Sequences” on page 65 when we discussed
matching on lists? We wrote this case expression:

def processList(l: List[Any]): Unit = l match {
 case head :: tail => ...
 ...
}

It turns out that the following expressions are identical:

case head :: tail => ...
 case ::(head, tail) => ...

We are using the companion object for the case class named ::, which is used for non-
empty lists. When used in case expressions, the compiler supports this special infix
operator notation for invocations of unapply.

It works not only for unapply methods with two arguments, but also with one or more
arguments. We could rewrite our matchOn method this way:

def matchOn(shape: Shape) = shape match {
 case center Circle radius => ...
 case ll Rectangle (h, w) => ...
 case p1 Triangle (p2, p3) => ...
 case _ => ...
}

For an unapply that takes one argument, you would have to insert an empty set of
parentheses to avoid a parsing ambiguity:

case arg Foo () => ...

From the point of view of clarity, this syntax is elegant for some cases when there are
two arguments. For lists, head :: tail matches the expressions for building up lists,
so there is a beautiful symmetry when the extraction process uses the same syntax.
However, the merits of this syntax are less clear for other examples, especially when
there are N != 2 arguments.

Case Classes | 139

The copy Method in Scala Version 2.8
In Scala version 2.8, another instance method is automatically generated, called copy.
This method is useful when you want to make a new instance of a case class that is
identical to another instance with a few fields changed. Consider the following example
script:

// code-examples/AdvOOP/shapes/shapes-usage-example3-v28-script.scala
// Scala version 2.8 only.

import shapes._

val circle1 = Circle(Point(0.0, 0.0), 2.0)
val circle2 = circle1 copy (radius = 4.0)

println(circle1)
println(circle2)

The second circle is created by copying the first and specifying a new radius. The
copy method implementation that is generated by the compiler exploits the new named
and default parameters in Scala version 2.8, which we discussed in “Method Default
and Named Arguments (Scala Version 2.8)” on page 26. The generated implementation
of Circle.copy looks roughly like the following:

case class Circle(center: Point, radius: Double) extends Shape() {
 ...
 def copy(center: Point = this.center, radius: Double = this.radius) =
 new Circle(center, radius)
}

So, default values are provided for all the arguments to the method (only two in this
case). When using the copy method, the user specifies by name only the fields that are
changing. The values for the rest of the fields are used without having to reference them
explicitly.

Case Class Inheritance
Did you notice that the new Shapes code in “Case Classes” on page 136 did not put the
case keyword on the abstract Shape class? This is allowed by the compiler, but there
are reasons for not having one case class inherit another. First, it can complicate field
initialization. Suppose we make Shape a case class. Suppose we want to add a string
field to all shapes representing an id that the user wants to set. It makes sense to define
this field in Shape. Let’s make these two changes to Shape:

abstract case class Shape(id: String) {
 def draw(): Unit
}

Now the derived shapes need to pass the id to the Shape constructor. For example,
Circle would become the following:

140 | Chapter 6: Advanced Object-Oriented Programming In Scala

case class Circle(id: String, center: Point, radius: Double) extends Shape(id){
 def draw(): Unit
}

However, if you compile this code, you’ll get errors like the following:

... error: error overriding value id in class Shape of type String;
 value id needs `override' modifier
 case class Circle(id: String, center: Point, radius: Double) extends Shape(id){
 ^

Remember that both definitions of id, the one in Shape and the one in Circle, are
considered val field definitions! The error message tells us the answer; use the
override keyword, as we discussed in “Overriding Members of Classes and
Traits” on page 111. So, the complete set of required modifications are as follows:

// code-examples/AdvOOP/shapes/shapes-case-id.scala

package shapesid {
 case class Point(x: Double, y: Double)

 abstract case class Shape(id: String) {
 def draw(): Unit
 }

 case class Circle(override val id: String, center: Point, radius: Double)
 extends Shape(id) {
 def draw() = println("Circle.draw: " + this)
 }

 case class Rectangle(override val id: String, lowerLeft: Point,
 height: Double, width: Double) extends Shape(id) {
 def draw() = println("Rectangle.draw: " + this)
 }

 case class Triangle(override val id: String, point1: Point,
 point2: Point, point3: Point) extends Shape(id) {
 def draw() = println("Triangle.draw: " + this)
 }
}

Note that we also have to add the val keywords. This works, but it is somewhat ugly.

A more ominous problem involves the generated equals methods. Under inheritance,
the equals methods don’t obey all the standard rules for robust object equality. We’ll
discuss those rules in “Equality of Objects” on page 142. For now, consider the fol-
lowing example:

// code-examples/AdvOOP/shapes/shapes-case-equals-ambiguity-script.scala

import shapesid._

case class FancyCircle(name: String, override val id: String,
 override val center: Point, override val radius: Double)
 extends Circle(id, center, radius) {
 override def draw() = println("FancyCircle.draw: " + this)

Case Classes | 141

}

val fc = FancyCircle("me", "circle", Point(0.0,0.0), 10.0)
val c = Circle("circle", Point(0.0,0.0), 10.0)
format("FancyCircle == Circle? %b\n", (fc == c))
format("Circle == FancyCircle? %b\n", (c == fc))

If you run this script, you get the following output:

FancyCircle == Circle? false
Circle == FancyCircle? true

So, Circle.equals evaluates to true when given a FancyCircle with the same values for
the Circle fields. The reverse case isn’t true. While you might argue that, as far as
Circle is concerned, they really are equal, most people would argue that this is a risky,
“relaxed” interpretation of equality. It’s true that a future version of Scala could gen-
erate equals methods for case classes that do exact type-equality checking.

So, the conveniences provided by case classes sometimes lead to problems. It is best to
avoid inheritance of one case class by another. Note that it’s fine for a case class to
inherit from a non-case class or trait. It’s also fine for a non-case class or trait to inherit
from a case class.

Because of these issues, it is possible that case class inheritance will be deprecated and
removed in future versions of Scala.

Avoid inheriting a case class from another case class.

Equality of Objects
Implementing a reliable equality test for instances is difficult to do correctly. Effective
Java ([Bloch2008]) and the Scaladoc page for AnyRef.equals describe the requirements
for a good equality test. A very good description of the techniques for writing correct
equals and hashCode methods can be found in [Odersky2009], which uses Java syntax,
but is adapted from Chapter 28 of Programming in Scala ([Odersky2008]). Consult
these references when you need to implement your own equals and hashCode methods.
Recall that these methods are created automatically for case classes.

Here we focus on the different equality methods available in Scala and their meanings.
There are some slight inconsistencies between the Scala specification (see [ScalaS-
pec2009]) and the Scaladoc pages for the equality-related methods for Any and
AnyRef, but the general behavior is clear.

Some of the equality methods have the same names as equality methods
in other languages, but the semantics are sometimes different!

142 | Chapter 6: Advanced Object-Oriented Programming In Scala

The equals Method
The equals method tests for value equality. That is, obj1 equals obj2 is true if both
obj1 and obj2 have the same value. They do not need to refer to the same instance.

Hence, equals behaves like the equals method in Java and the eql? method in Ruby.

The == and != Methods
While == is an operator in many languages, it is a method in Scala, defined as final in
Any. It tests for value equality, like equals. That is, obj1 == obj2 is true if both obj1 and
obj2 have the same value. In fact, == delegates to equals. Here is part of the Scaladoc
entry for Any.==:

o == arg0 is the same as o.equals(arg0).

Here is the corresponding part of the Scaladoc entry for AnyRef.==:

o == arg0 is the same as if (o eq null) arg0 eq null else o.equals(arg0).

As you would expect, != is the negation, i.e., it is equivalent to !(obj1 == obj2).

Since == and != are declared final in Any, you can’t override them, but you don’t need
to, since they delegate to equals.

In Java, C++, and C#, the == operator tests for reference, not value
equality. In contrast, Ruby’s == operator tests for value equality. What-
ever language you’re used to, make sure to remember that in Scala, ==
is testing for value equality.

The ne and eq Methods
The eq method tests for reference equality. That is, obj1 eq obj2 is true if both obj1 and
obj2 point to the same location in memory. These methods are only defined for AnyRef.

Hence, eq behaves like the == operator in Java, C++, and C#, but not == in Ruby.

The ne method is the negation of eq, i.e., it is equivalent to !(obj1 eq obj2).

Array Equality and the sameElements Method
Comparing the contents of two Arrays doesn’t have an obvious result in Scala:

scala> Array(1, 2) == Array(1, 2)
res0: Boolean = false

That’s a surprise! Thankfully, there’s a simple solution in the form of the
sameElements method:

scala> Array(1, 2).sameElements(Array(1, 2))
res1: Boolean = true

Equality of Objects | 143

Much better. Remember to use sameElements when you want to test if two Arrays con-
tain the same elements.

While this may seem like an inconsistency, encouraging an explicit test of the equality
of two mutable data structures is a conservative approach on the part of the language
designers. In the long run, it should save you from unexpected results in your
conditionals.

Recap and What’s Next
We explored the fine points of overriding members in derived classes. We learned about
object equality, case classes, and companion classes and objects.

In the next chapter, we’ll learn about the Scala type hierarchy—in particular, the
Predef object that includes many useful definitions. We’ll also learn about Scala’s al-
ternative to Java’s static class members and the linearization rules for method lookup.

144 | Chapter 6: Advanced Object-Oriented Programming In Scala

CHAPTER 7

The Scala Object System

The Predef Object
For your convenience, whenever you compile code, the Scala compiler automatically
imports the definitions in the java.lang package (javac does this, too). On the .NET
platform, it imports the system package. The compiler also imports the definitions in
the analogous Scala package, scala. Hence, common Java or .NET types can be used
without explicitly importing them or fully qualifying them with the java.lang. prefix,
in the Java case. Similarly, a number of common, Scala-specific types are made available
without qualification, such as List. Where there are Java and Scala type names that
overlap, like String, the Scala version is imported last, so it “wins.”

The compiler also automatically imports the Predef object, which defines or imports
several useful types, objects, and functions.

You can learn a lot of Scala by viewing the source for Predef. It is avail-
able by clicking the “source” link in the Predef Scaladoc page, or you
can download the full source code for Scala at http://www.scala-lang
.org/.

Table 7-1 shows a partial list of the items imported or defined by Predef on the Java
platform.

Table 7-1. Items imported or defined by Predef

Types Character, Class, Error, Function, Integer, Map, Pair, Runnable, Set, String, Throwa
ble, Triple.

Exceptions Exception, ArrayIndexOutOfBoundsException, ClassCastException, IllegalArgumen
tException, IndexOutOfBoundsException, NoSuchElementException, NullPointerEx
ception, NumberFormatException, RuntimeException, StringIndexOutOfBoundsExcep
tion, UnsupportedOperationException.

Values Map, Set.

145

http://www.scala-lang.org/
http://www.scala-lang.org/

Objects Pair, Triple.

Classes Ensuring, ArrowAssoc.

Methods Factory methods to create tuples; overloaded versions of exit, error, assert, assume, and require;
implicit type conversion methods; I/O methods like readLine, println, and format; and a method
currentThread, which calls java.lang.Thread.currentThread.

Predef declares the types and exceptions listed in the table using the type keyword.
They are definitions that equal the corresponding scala.<Type> or java.lang.<Type>
classes, so they behave like “aliases” or imports for the corresponding classes. For ex-
ample, String is declared as follows:

type String = java.lang.String

In this case, the declaration has the same net effect as an import java.lang.String
statement would have.

But didn’t we just say that definitions in java.lang are imported automatically, like
String? The reason there is a type definition is to enable support for a uniform string
type across all runtime environments. The definition is only redundant on the JVM.

The type Pair is an “alias” for Tuple2:

type Pair[+A, +B] = Tuple2[A, B]

There are two type parameters, A and B, one for each item in the pair. Recall from
“Abstract Types And Parameterized Types” on page 47 that we explained the meaning
of the + in front of each type parameter.

Briefly, a Pair[A2,B2], for some A2 and B2, is a subclass of Pair[A1,B1], for some A1 and
B1, if A2 is a subtype of A1 and B2 is a subtype of B1. In “Understanding Parameterized
Types” on page 249, we’ll discuss + and other type qualifiers in more detail.

The Pair class also has a companion object Pair with an apply factory method, as dis-
cussed in “Companion Objects” on page 126. Hence, we can create Pair instances as
in this example:

val p = Pair(1, "one")

Pair.apply is called with the two arguments. The types A and B, shown in the definition
of Pair, are inferred. A new Tuple2 instance is returned.

Map and Set appear in both the types and values lists. In the values list, they are
assigned the companion objects scala.collection.immutable.Map and scala.collec
tion.immutable.Set, respectively. Hence, Map and Set in Predef are values, not object
definitions, because they refer to objects defined elsewhere, whereas Pair and Triple
are defined in Predef itself. The types Map and Set are assigned the corresponding
immutable classes.

146 | Chapter 7: The Scala Object System

The ArrowAssoc class defines two methods: ->, and the Unicode equivalent →. The utility
of these methods was demonstrated previously in “Option, Some, and None: Avoiding
nulls” on page 41, where we created a map of U.S. state capitals:

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 // ...
 "Wyoming" -> "Cheyenne")
// ...

The definition of the ArrowAssoc class and the Map and Set values in Predef make the
convenient Map initialization syntax possible. First, when Scala sees Map(...) it calls the
apply method on the Map companion object, just as we discussed for Pair.

Map.apply expects zero or more Pairs (e.g., (a1, b2), (a2, b2), ...), where each tuple
holds a name and value. In the example, the tuple types are all inferred to be of type
Pair[String,String]. The declaration of Map.apply is as follows:

object Map {
 ...
 def apply[A, B](elems : (A, B)*) : Map[A, B] = ...
}

Recall that there can be no type parameters on the Map companion object because there
can be only one instance. However, apply can have type parameters.

The apply method takes a variable-length argument list. Internally, x will be a subtype
of Array[X]. So, for Map.apply, elems is of type Array[(A,B)] or Array[Tuple2[A,B]], if
you prefer.

So, now that we know what Map.apply expects, how do we get from a -> b to (a, b)?

Predef also defines an implicit type conversion method called any2ArrowAssoc. The
compiler knows that String does not define a -> method, so it looks for an implicit
conversion in scope to a type that defines such a method, such as ArrowAssoc. The
any2ArrowAssoc method performs that conversion. It has the following implementation:

implicit def any2ArrowAssoc[A](x: A): ArrowAssoc[A] = new ArrowAssoc(x)

It is applied to each item to the left of an arrow ->, e.g., the "Alabama" string. These
strings are wrapped in ArrowAssoc instances, upon which the -> method is then invoked.
This method has the following implementation:

class ArrowAssoc[A](x: A) {
 ...
 def -> [B](y: B): Tuple2[A, B] = Tuple2(x, y)
}

When it is invoked, it is passed the string on the righthand side of the ->. The method
returns a tuple with the value, ("Alabama", "Montgomery"), for example. In this way,
each key -> value is converted into a tuple and the resulting comma-separated list of
tuples is passed to the Map.apply factory method.

The Predef Object | 147

The description may sound complicated at first, but the beauty of Scala is that this map
initialization syntax is not an ad hoc language feature, such as a special-purpose oper-
ator -> defined in the language grammar. Instead, this syntax is defined with normal
definitions of types and methods, combined with a few general-purpose parsing con-
ventions, such as support for implicits. Furthermore, it is all type-safe. You can use the
same techniques to write your own convenient “operators” for mini Domain-Specific
Languages (see Chapter 11).

Implicit type conversions are discussed in more detail in “Implicit Conver-
sions” on page 186.

Next, recall from Chapter 1 that we were able to replace calls to
Console.println(...) with println(...). This “bare” println method is defined in
Predef, then imported automatically by the compiler. The definition calls the corre-
sponding method in Console. Similarly, all the other I/O methods defined by Predef,
e.g., readLine and format, call the corresponding Console methods.

Finally, the assert, assume, and require methods are each overloaded with various
argument list options. They are used for runtime testing of boolean conditions. If a
condition is false, an exception is thrown. The Ensuring class serves a similar purpose.
You can use these features for Design by Contract programming, as discussed in “Better
Design with Design By Contract” on page 340.

For the full list of features defined by Predef, see the corresponding Scaladoc entry in
[ScalaAPI2008].

Four Ways to Create a Two-Item Tuple
We now know four ways to create a two-item tuple (twople?):

1. (“Hello”, 3.14)

2. Pair(“Hello”, 3.14)

3. Tuple2(“Hello”, 3.14)

4. “Hello” → 3.14

Classes and Objects: Where Are the Statics?
Many object-oriented languages allow classes to have class-level constants, fields, and
methods, called “static” members in Java, C#, and C++. These constants, fields, and
methods are not associated with any instances of the class.

An example of a class-level field is a shared logging instance used by all instances of a
class for logging messages. An example of a class-level constant is the default logging
“threshold” level.

148 | Chapter 7: The Scala Object System

An example of a class-level method is a “finder” method that locates all instances of
the class in some repository that match some user-specified criteria. Another example
is a factory method, as used in one of the factory-related design patterns (see
[GOF1995]).

To remain consistent with the goal that “everything is an object” in Scala, class-level
fields and methods are not supported. Instead, Scala supports declarations of classes
that are singletons, using the object keyword instead of the class keyword. The
objects provide an object-oriented approach to “static” data and methods. Hence,
Scala does not even have a static keyword.

Objects are instantiated automatically and lazily by the runtime system (see Section 5.4
of [ScalaSpec2009]). Just as for classes and traits, the body of the object is the con-
structor, but since the system instantiates the object, there is no way for the user to
specify a parameter list for the constructor, so they aren’t supported. Any data defined
in the object has to be initialized with default values. For the same reasons, auxiliary
constructors can’t be used and are not supported.

We’ve already seen some examples of objects, such as the specs objects used previously
for tests, and the Pair type and its companion object, which we explored in “The Predef
Object” on page 145:

type Pair[+A, +B] = Tuple2[A, B]
object Pair {
 def apply[A, B](x: A, y: B) = Tuple2(x, y)
 def unapply[A, B](x: Tuple2[A, B]): Option[Tuple2[A, B]] = Some(x)
}

To reference an object field or method, you use the syntax object_name.field or
object_name.method(...), respectively. For example, Pair.apply(...). Note that this
is the same syntax that is commonly used in languages with static fields and methods.

When an object named MyObject is compiled to a class file, the class file
name will be MyObject$.class.

In Java and C#, the convention for defining constants is to use final static fields.
(C# also has a constant keyword for simple fields, like ints and strings.) In Scala, the
convention is to use val fields in objects.

Finally, recall from “Nested Classes” on page 95 that class definitions can be nested
within other class definitions. This property generalizes for objects. You can define
nested objects, traits, and classes inside other objects, traits, and classes.

Classes and Objects: Where Are the Statics? | 149

Package Objects
Scala version 2.8 introduces a new scoping construct called package objects. They are
used to define types, variables, and methods that are visible at the level of the corre-
sponding package. To understand their usefulness, let’s see an example from Scala
version 2.8 itself. The collection library is being reorganized to refine the package
structure and to use it more consistently (among other changes). The Scala team faced
a dilemma. They wanted to move types to new packages, but avoid breaking backward
compatibility. The package object construct provided a solution, along with other
benefits.

For example, the immutable List is defined in the scala package in version 2.7, but it
is moved to the scala.collection.immutable package in version 2.8. Despite the
change, List is made visible in the scala package using package object scala, found
in the src/library/scala/package.scala file in the version 2.8 source code distribution.
Note the file name. It’s not required, but it’s a useful convention for package objects.
Here is the full package object definition (at the time of this writing; it could change
before the 2.8.0 final version is released):

package object scala {
 type Iterable[+A] = scala.collection.Iterable[A]
 val Iterable = scala.collection.Iterable

 @deprecated("use Iterable instead") type Collection[+A] = Iterable[A]
 @deprecated("use Iterable instead") val Collection = Iterable

 type Seq[+A] = scala.collection.Sequence[A]
 val Seq = scala.collection.Sequence

 type RandomAccessSeq[+A] = scala.collection.Vector[A]
 val RandomAccessSeq = scala.collection.Vector

 type Iterator[+A] = scala.collection.Iterator[A]
 val Iterator = scala.collection.Iterator

 type BufferedIterator[+A] = scala.collection.BufferedIterator[A]

 type List[+A] = scala.collection.immutable.List[A]
 val List = scala.collection.immutable.List

 val Nil = scala.collection.immutable.Nil

 type ::[A] = scala.collection.immutable.::[A]
 val :: = scala.collection.immutable.::

 type Stream[+A] = scala.collection.immutable.Stream[A]
 val Stream = scala.collection.immutable.Stream

 type StringBuilder = scala.collection.mutable.StringBuilder
 val StringBuilder = scala.collection.mutable.StringBuilder
}

150 | Chapter 7: The Scala Object System

Note that pairs of declarations like type List[+] = ... and val List = ... are effec-
tively “aliases” for the companion class and object, respectively. Because the contents
of the scala package are automatically imported by the compiler, you can still reference
all the definitions in this object in any scope without an explicit import statement for
fully qualified names.

Other than the way the members in package objects are scoped, they behave just like
other object declarations. While this example contains only vals and types, you can
also define methods, and you can subclass another class or trait and mix in other traits.

Another benefit of package objects is that it provides a more succinct implementation
of what was an awkward idiom before. Without package objects, you would have to
put definitions in an ad hoc object inside the desired package, then import from the
object. For example, here is how List would have to be handled without a package
object:

package scala {
 object toplevel {
 ...
 type List[+A] = scala.collection.immutable.List[A]
 val List = scala.collection.immutable.List
 ...
 }
}

...
import scala.toplevel._
...

Finally, another benefit of package objects is the way they provide a clear separation
between the abstractions exposed by a package and the implementations that should
be hidden inside it. In a larger application, a package object could be used to expose
all the public types, values, and operations (methods) for a “component,” while ev-
erything else in the package and nested packages could be treated as internal imple-
mentation details.

Sealed Class Hierarchies
Recall from “Case Classes” on page 136 that we demonstrated pattern matching with
our Shapes hierarchy, which use case classes. We had a default case _ => ... expres-
sion. It’s usually wise to have one. Otherwise, if someone defines a new subtype of
Shape and passes it to this match statement, a runtime scala.MatchError will be thrown,
because the new shape won’t match the shapes covered in the match statement. How-
ever, it’s not always possible to define reasonable behavior for the default case.

There is an alternative solution if you know that the case class hierarchy is unlikely to
change and you can define the whole hierarchy in one file. In this situation, you can
add the sealed keyword to the declaration of the common base class. When sealed, the

Sealed Class Hierarchies | 151

compiler knows all the possible classes that could appear in the match expression, be-
cause all of them must be defined in the same source file. So, if you cover all those
classes in the case expressions (either explicitly or through shared parent classes), then
you can safely eliminate the default case expression.

Here is an example using the HTTP 1.1 methods (see [HTTP1.1]), which are not likely
to change very often, so we declare a “sealed” set of case classes for them:

// code-examples/ObjectSystem/sealed/http-script.scala

sealed abstract class HttpMethod()
case class Connect(body: String) extends HttpMethod
case class Delete (body: String) extends HttpMethod
case class Get (body: String) extends HttpMethod
case class Head (body: String) extends HttpMethod
case class Options(body: String) extends HttpMethod
case class Post (body: String) extends HttpMethod
case class Put (body: String) extends HttpMethod
case class Trace (body: String) extends HttpMethod

def handle (method: HttpMethod) = method match {
 case Connect (body) => println("connect: " + body)
 case Delete (body) => println("delete: " + body)
 case Get (body) => println("get: " + body)
 case Head (body) => println("head: " + body)
 case Options (body) => println("options: " + body)
 case Post (body) => println("post: " + body)
 case Put (body) => println("put: " + body)
 case Trace (body) => println("trace: " + body)
}

val methods = List(
 Connect("connect body..."),
 Delete ("delete body..."),
 Get ("get body..."),
 Head ("head body..."),
 Options("options body..."),
 Post ("post body..."),
 Put ("put body..."),
 Trace ("trace body..."))

methods.foreach { method => handle(method) }

This script outputs the following:

connect: connect body...
delete: delete body...
get: get body...
head: head body...
options: options body...
post: post body...
put: put body...
trace: trace body...

152 | Chapter 7: The Scala Object System

No default case is necessary, since we cover all the possibilities. Conversely, if you omit
one of the classes and you don’t provide a default case or a case for a shared parent
class, the compiler warns you that the “match is not exhaustive.” For example, if you
comment out the case for Put, you get this warning:

warning: match is not exhaustive!
missing combination Put

def handle (method: HttpMethod) = method match {
...

You also get a MatchError exception if a Put instance is passed to the match.

Using sealed has one drawback. Every time you add or remove a class from the hier-
archy, you have to modify the file, since the entire hierarchy has to be declared in the
same file. This breaks the Open-Closed Principle (see [Meyer1997] and [Martin2003]),
which is a solution to the practical problem that it can be costly to modify existing code,
retest it (and other code that uses it), and redeploy it. It’s much less “costly” if you can
extend the system by adding new derived types in separate source files. This is why we
picked the HTTP method hierarchy for the example. The list of methods is very stable.

Avoid sealed case class hierarchies if the hierarchy changes frequently
(for an appropriate definition of “frequently”).

Finally, you may have noticed some duplication in the example. All the concrete classes
have a body field. Why didn’t we put that field in the parent HttpMethod class? Because
we decided to use case classes for the concrete classes, we’ll run into the same problem
with case class inheritance that we discussed in “Case Class Inheri-
tance” on page 140, where we added a shared id field in the Shape hierarchy. We need
the body argument for each HTTP method’s constructor, yet it will be made a field of
each method type automatically. So, we would have to use the override val technique
we demonstrated previously.

We could remove the case keywords and implement the methods and companion ob-
jects that we need. However, in this case, the duplication is minimal and tolerable.

What if we want to use case classes, yet also reference the body field in HttpMethod?
Fortunately, we know that Scala will generate a body reader method in every concrete
subclass (as long as we use the name body consistently!). So, we can declare that method
abstract in HttpMethod, then use it as we see fit. The following example demonstrates
this technique:

// code-examples/ObjectSystem/sealed/http-body-script.scala

sealed abstract class HttpMethod() {
 def body: String
 def bodyLength = body.length

Sealed Class Hierarchies | 153

}

case class Connect(body: String) extends HttpMethod
case class Delete (body: String) extends HttpMethod
case class Get (body: String) extends HttpMethod
case class Head (body: String) extends HttpMethod
case class Options(body: String) extends HttpMethod
case class Post (body: String) extends HttpMethod
case class Put (body: String) extends HttpMethod
case class Trace (body: String) extends HttpMethod

def handle (method: HttpMethod) = method match {
 case Connect (body) => println("connect: " + body)
 case Delete (body) => println("delete: " + body)
 case Get (body) => println("get: " + body)
 case Head (body) => println("head: " + body)
 case Options (body) => println("options: " + body)
 case Post (body) => println("post: " + body)
 case Put (body) => println("put: " + body)
 case Trace (body) => println("trace: " + body)
}

val methods = List(
 Connect("connect body..."),
 Delete ("delete body..."),
 Get ("get body..."),
 Head ("head body..."),
 Options("options body..."),
 Post ("post body..."),
 Put ("put body..."),
 Trace ("trace body..."))

methods.foreach { method =>
 handle(method)
 println("body length? " + method.bodyLength)
}

We declared body abstract in HttpMethod. We added a simple bodyLength method that
calls body. The loop at the end of the script calls bodyLength. Running this script pro-
duces the following output:

connect: connect body...
body length? 15
delete: delete body...
body length? 14
get: get body...
body length? 11
head: head body...
body length? 12
options: options body...
body length? 15
post: post body...
body length? 12
put: put body...
body length? 11

154 | Chapter 7: The Scala Object System

trace: trace body...
body length? 13

As always, every feature has pluses and minuses. Case classes and sealed class hierar-
chies have very useful properties, but they aren’t suitable for all situations.

The Scala Type Hierarchy
We have mentioned a number of types in Scala’s type hierarchy already. Let’s look at
the general structure of the hierarchy, as illustrated in Figure 7-1.

Figure 7-1. Scala’s type hierarchy

Tables 7-2 and 7-3 discuss the types shown in Figure 7-1, as well as some other im-
portant types that aren’t shown. Some details are omitted for clarity. When the under-
lying “runtime” is discussed, the points made apply equally to the JVM and the .NET
CLR, except where noted.

The Scala Type Hierarchy | 155

Table 7-2. Any, AnyVal, and AnyRef

Name Parent Description

Any none The root of the hierarchy. Defines a few final methods like ==, !=, isInstanceOf[T] (for type
checking), and asInstanceOf[T] (for type casting), as well as default versions of equals,
hashCode, and toString, which are designed to be overridden by subclasses.

AnyVal Any The parent of all value types, which correspond to the primitive types on the runtime platform, plus
Unit. All the AnyVal instances are immutable value instances, and all the AnyVal types are
abstract final. Hence, none of them can be instantiated with new. Rather, new instances are
created with literal values (e.g., 3.14 for a Double) or by calling methods on instances that return
new values.

AnyRef Any The parent of all reference types, including all java.* and scala.* types. It is equivalent to
java.lang.Object for the JVM and object (System.Object) for the .NET runtime. Instances
of reference types are created with new.

The value types are children of AnyVal.

Table 7-3. Direct subtypes of AnyVal, the value types

Name Runtime primitive type

Boolean Boolean (true and false).

Byte Byte.

Char Char.

Short Short.

Int Int.

Long Long.

Float Float.

Double Double.

Unit Serves the same role as void in most imperative languages. Used primarily as a function return value.
There is only one instance of Unit, named (). Think of it as a tuple with zero items.

All other types, the reference types, are children of AnyRef. Table 7-4 lists some of the
more commonly used reference types. Note that there are some significant differences
between the version 2.7.X and 2.8 collections.

Table 7-4. Direct and indirect subtypes of AnyRef, the reference types

Name Parent Description

Collection[+T] Iterable[T] Trait for collections of known size.

Either[+T1, +T2] AnyRef Used most often as a return type when a method could return an instance
of one of two unrelated types. For example, an exception or a “successful”
result. The Either can be pattern matched for its Left or Right
subtypes. (It is analogous to Option, with Some and None.) For the

156 | Chapter 7: The Scala Object System

Name Parent Description
exception-handling idiom, it is conventional to use Left for the
exception.

FunctionN[-T1, -T2,
..., -TN, +R]

AnyRef Trait representing a function that takes N arguments, each of which can
have its own type, and returns a value of type R. (Traits are defined for
N = 0 to 22.) The variance annotations (+ and -) in front of the types will
be explained in “Variance Under Inheritance” on page 251.

Iterable[+T] AnyRef Trait with methods for operating on collections of instances. Users
implement the abstract elements method to return an Iterable
instance.

List[+T] Seq[T] sealed abstract class for ordered collections with functional-
style list semantics. It is the most widely used collection in Scala, so it is
defined in the scala package, rather than one of the collection packages.
(In Scala version2.8, it is actually defined in scala.collec
tion.immutable and “aliased” in package object scala). It
has two subclasses, case object Nil, which extends List[Noth
ing] and represents an empty list, and case final class ::
[T], which represents a non-empty list, characterized by a head element
and a tail list, which would be Nil for a one-element list.

Nothing All other types Nothing is the subtype of all other types. It has no instances. It is used
primarily for defining other types in a type-safe way, such as the special
List subtype Nil. See also “Nothing and Null” on page 267.

Null All reference types Null has one instance, null, corresponding to the runtime’s concept
of null.

Option[T] Product Wraps an optional item. It is a sealed abstract type and the only
allowed instances are an instance of its derived case class
Some[T], wrapping an instance of T, or its derived case object
None, which extends Option[Nothing].

Predef AnyRef An object that defines and imports many commonly used types and
methods. See “The Predef Object” on page 145 for details.

Product AnyRef Trait with methods for determining arity and getting the nth item in a
“Cartesian product.” Subtraits are defined for Product, called
ProductN, for dimension N from 1 through 22.

ScalaObject AnyRef Mixin trait added to all Scala reference type instances.

Seq[+T] Collection[T] Trait for ordered collections.

TupleN ProductN Separate case classes for arity N = 1 through 22. Tuples support the
literal syntax (x1, x2, ..., xN).

Besides List, some of the other library collections include Map, Set, Queue, and Stack.
These other collections come in two varieties: mutable and immutable. The immutable
collections are in the package scala.collection.immutable, while the mutable collec-
tions are in scala.collection.mutable. Only an immutable version of List is provided;
for a mutable list, use a ListBuffer, which can return a List via the toList method.
For Scala version 2.8, the collections implementations reuse code from

The Scala Type Hierarchy | 157

scala.collection.generic. Users of the collections would normally not use any types
defined in this package. We’ll explore some of these collections in greater detail in
“Functional Data Structures” on page 172.

Consistent with its emphasis on functional programming (see Chapter 8), Scala en-
courages you to use the immutable collections, since List is automatically imported
and Predef defines types Map and Set that refer to the immutable versions of these
collections. All other collections have to be imported explicitly.

Predef defines a number of implicit conversion methods for the value types (excluding
Unit). There are implicit conversions to the corresponding scala.runtime.RichX types.
For example, the byteWrapper method converts a Byte to a scala.runtime.RichByte.
There are implicit conversions between the “numeric” types—Byte, Short, Int, Long,
and Float—to the other types that are “wider” than the original. For example, Byte to
Int, Int to Long, Int to Double, etc. Finally, there are conversions to the corresponding
Java wrapper types, e.g., Int to java.lang.Integer. We discuss implicit conversions in
more detail in “Implicit Conversions” on page 186.

There are several examples of Option elsewhere, e.g., “Option, Some, and None: Avoid-
ing nulls” on page 41. Here is a script that illustrates using an Either return value to
handle a thrown exception or successful result (adapted from http://dcsobral.blogspot
.com/2009/06/catching-exceptions.html):

// code-examples/ObjectSystem/typehierarchy/either-script.scala

def exceptionToLeft[T](f: => T): Either[java.lang.Throwable, T] = try {
 Right(f)
} catch {
 case ex => Left(ex)
}

def throwsOnOddInt(i: Int) = i % 2 match {
 case 0 => i
 case 1 => throw new RuntimeException(i + " is odd!")
}

for(i <- 0 to 3)
 exceptionToLeft(throwsOnOddInt(i)) match {
 case Left(ex) => println("Oops, got exception " + ex.toString)
 case Right(x) => println(x)
 }

The exceptionToLeft method evaluates f. It catches a Throwable and returns it as the
Left value or returns the normal result as the Right value. The for loop uses this method
to invoke throwsOnOddInt. It pattern matches on the result and prints an appropriate
message. The output of the script is the following:

0
Oops, got exception java.lang.RuntimeException: 1 is odd!
2
Oops, got exception java.lang.RuntimeException: 3 is odd!

158 | Chapter 7: The Scala Object System

http://dcsobral.blogspot.com/2009/06/catching-exceptions.html
http://dcsobral.blogspot.com/2009/06/catching-exceptions.html

A FunctionN trait, where N is 0 to 22, is instantiated for an anonymous function with
N arguments. So, consider the following anonymous function:

(t1: T1, ..., tN: TN) => new R(...)

It is syntactic sugar for the following creation of an anonymous class:

new FunctionN {
 def apply(t1: T1, ..., tN: TN): R = new R(...)

 // other methods
}

We’ll revisit FunctionN in “Variance Under Inheritance” on page 251 and “Function
Types” on page 277.

Linearization of an Object’s Hierarchy
Because of single inheritance, the inheritance hierarchy would be linear, if we ignored
mixed-in traits. When traits are considered, each of which may be derived from other
traits and classes, the inheritance hierarchy forms a directed, acyclic graph (see [Sca-
laSpec2009]). The term linearization refers to the algorithm used to “flatten” this graph
for the purposes of resolving method lookup priorities, constructor invocation order,
binding of super, etc.

Informally, we saw in “Stackable Traits” on page 82 that when an instance has more
than one trait, they bind right to left, as declared. Consider the following example of
linearization:

// code-examples/ObjectSystem/linearization/linearization1-script.scala

class C1 {
 def m = List("C1")
}

trait T1 extends C1 {
 override def m = { "T1" :: super.m }
}

trait T2 extends C1 {
 override def m = { "T2" :: super.m }
}

trait T3 extends C1 {
 override def m = { "T3" :: super.m }
}

class C2 extends T1 with T2 with T3 {
 override def m = { "C2" :: super.m }
}

val c2 = new C2
println(c2.m)

Linearization of an Object’s Hierarchy | 159

Running this script yields the following output:

List(C2, T3, T2, T1, C1)

This list of strings built up by the m methods reflects the linearization of the inheritance
hierarchy, with a few missing pieces we’ll discuss shortly. We’ll also see why C1 is at
the end of the list. First, let’s see what the invocation sequence of the constructors looks
like:

// code-examples/ObjectSystem/linearization/linearization2-script.scala

var clist = List[String]()

class C1 {
 clist ::= "C1"
}

trait T1 extends C1 {
 clist ::= "T1"
}

trait T2 extends C1 {
 clist ::= "T2"
}

trait T3 extends C1 {
 clist ::= "T3"
}

class C2 extends T1 with T2 with T3 {
 clist ::= "C2"
}

val c2 = new C2
println(clist.reverse)

Running this script yields the following output:

List(C1, T1, T2, T3, C2)

So, the construction sequence is the reverse. (We had to reverse the list on the last line,
because the way it was constructed put the elements in the reverse order.) This invo-
cation order makes sense. For proper construction to occur, the parent types need to
be constructed before the derived types, since a derived type often uses fields and
methods in the parent types during its construction process.

The output of the first linearization script is actually missing three types at the end. The
full linearization for reference types actually ends with ScalaObject, AnyRef, and Any.
So the linearization for C2 is actually:

List(C2, T3, T2, T1, C1, ScalaObject, AnyRef, Any)

Scala inserts the ScalaObject trait as the last mixin, just before AnyRef and Any that are
the penultimate and ultimate parent classes of any reference type. Of course, these three

160 | Chapter 7: The Scala Object System

types do not show up in the output of the scripts, because we used an ad hoc m method
to figure out the behavior by building up an output string.

The “value types,” subclasses of AnyVal, are all declared abstract final. The compiler
manages instantiation of them. Since we can’t subclass them, their linearizations are
simple and straightforward.

The linearization defines the order in which method lookup occurs. Let’s examine it
more closely.

All our classes and traits define the method m. The one in C2 is called first, since the
instance is of that type. C2.m calls super.m, which resolves to T3.m. The search appears
to be breadth-first, rather than depth-first. If it were depth-first, it would invoke C1.m
after T3.m. Afterward, T3.m, T2.m, then T1.m, and finally C1.m are invoked. C1 is the parent
of the three traits. From which of the traits did we traverse to C1? Actually, it is breadth-
first, with “delayed” evaluation, as we will see. Let’s modify our first example and see
how we got to C1:

// code-examples/ObjectSystem/linearization/linearization3-script.scala

class C1 {
 def m(previous: String) = List("C1("+previous+")")
}

trait T1 extends C1 {
 override def m(p: String) = { "T1" :: super.m("T1") }
}

trait T2 extends C1 {
 override def m(p: String) = { "T2" :: super.m("T2") }
}

trait T3 extends C1 {
 override def m(p: String) = { "T3" :: super.m("T3") }
}

class C2 extends T1 with T2 with T3 {
 override def m(p: String) = { "C2" :: super.m("C2") }
}

val c2 = new C2
println(c2.m(""))

Now we pass the name of the caller of super.m as a parameter, then C1 prints out who
called it. Running this script yields the following output:

List(C2, T3, T2, T1, C1(T1))

It’s the last one, T1. We might have expected T3 from a “naïve” application of breadth-
first traversal.

Here is the actual algorithm for calculating the linearization. A more formal definition
is given in [ScalaSpec2009].

Linearization of an Object’s Hierarchy | 161

Linearization Algorithm for Reference Types
1. Put the actual type of the instance as the first element.

2. Starting with the rightmost parent type and working left, compute the linearization
of each type, appending its linearization to the cumulative linearization. (Ignore
ScalaObject, AnyRef, and Any for now.)

3. Working from left to right, remove any type if it appears again to the right of the
current position.

4. Append ScalaObject, AnyRef, and Any.

This explains how we got to C1 from T1 in the previous example. T3 and T2 also have it
in their linearizations, but they come before T1, so the C1 terms they contributed were
deleted.

Let’s work through the algorithm using a slightly more involved example:

// code-examples/ObjectSystem/linearization/linearization4-script.scala

class C1 {
 def m = List("C1")
}

trait T1 extends C1 {
 override def m = { "T1" :: super.m }
}

trait T2 extends C1 {
 override def m = { "T2" :: super.m }
}

trait T3 extends C1 {
 override def m = { "T3" :: super.m }
}

class C2A extends T2 {
 override def m = { "C2A" :: super.m }
}

class C2 extends C2A with T1 with T2 with T3 {
 override def m = { "C2" :: super.m }
}

def calcLinearization(obj: C1, name: String) = {
 val lin = obj.m ::: List("ScalaObject", "AnyRef", "Any")
 println(name + ": " + lin)
}

calcLinearization(new C2, "C2 ")
println("")
calcLinearization(new T3 {}, "T3 ")
calcLinearization(new T2 {}, "T2 ")

162 | Chapter 7: The Scala Object System

calcLinearization(new T1 {}, "T1 ")
calcLinearization(new C2A, "C2A")
calcLinearization(new C1, "C1 ")

The output is the following:

C2 : List(C2, T3, T1, C2A, T2, C1, ScalaObject, AnyRef, Any)

T3 : List(T3, C1, ScalaObject, AnyRef, Any)
T2 : List(T2, C1, ScalaObject, AnyRef, Any)
T1 : List(T1, C1, ScalaObject, AnyRef, Any)
C2A: List(C2A, T2, C1, ScalaObject, AnyRef, Any)
C1 : List(C1, ScalaObject, AnyRef, Any)

To help us along, we calculated the linearizations for the other types, and we also
appended ScalaObject, AnyRef, and Any to remind ourselves that they should also be
there. We also removed the logic to pass the caller’s name to m. That caller of C1 will
always be the element to its immediate left.

So, let’s work through the algorithm for C2 and confirm our results. We’ll suppress the
ScalaObject, AnyRef, and Any for clarity, until the end. See Table 7-5.

Table 7-5. Hand calculation of C2 linearization: C2 extends C2A with T1 with T2 with T3 {...}

Linearization Description

1 C2 Add the type of the instance.

2 C2, T3, C1 Add the linearization for T3 (farthest on the right).

3 C2, T3, C1, T2, C1 Add the linearization for T2.

4 C2, T3, C1, T2, C1, T1, C1 Add the linearization for T1.

5 C2, T3, C1, T2, C1, T1, C1, C2A, T2, C1 Add the linearization for C2A.

6 C2, T3, T2, T1, C2A, T2, C1 Remove duplicates of C1; all but the last C1.

7 C2, T3, T1, C2A, T2, C1 Remove duplicate T2; all but the last T2.

8 C2, T3, T1, C2A, T2, C1, ScalaObject,
AnyRef, Any

Finish!

What the algorithm does is push any shared types to the right until they come after
all the types that derive from them.

Try modifying the last script with different hierarchies and see if you can reproduce the
results using the algorithm.

Overly complex type hierarchies can result in method lookup “sur-
prises.” If you have to work through this algorithm to figure out what’s
going on, try to simplify your code.

Linearization of an Object’s Hierarchy | 163

Recap and What’s Next
We have finished our survey of Scala’s object model. If you come from an object-
oriented language background, you now know enough about Scala to replace your
existing object-oriented language with object-oriented Scala.

However, there is much more to come. Scala supports functional programming, which
offers powerful mechanisms for addressing a number of design problems, such as con-
currency. We’ll see that functional programming appears to contradict object-oriented
programming, at least on the surface. That said, a guiding principle behind Scala is that
these two paradigms complement each other more than they conflict. Combined, they
give you more options for building robust, scalable software. Scala lets you choose the
techniques that work best for your needs.

164 | Chapter 7: The Scala Object System

CHAPTER 8

Functional Programming in Scala

Every decade or two, a major computing idea goes mainstream. These ideas may have
lurked in the background of academic computer science research, or possibly in some
lesser-known field of industry. The transition to mainstream acceptance comes in re-
sponse to a perceived problem for which the idea is well suited. Object-oriented pro-
gramming, which was invented in the 1960s, went mainstream in the 1980s, arguably
in response to the emergence of graphical user interfaces, for which the OOP paradigm
is a natural fit.

Functional programming appears to be experiencing a similar breakout. Long the topic
of computer science research and even older than object-oriented programming, func-
tional programming offers effective techniques for concurrent programming, which is
growing in importance.

Because functional programming is less widely understood than object-oriented pro-
gramming, we won’t assume that you have prior experience with it. We’ll start this
chapter with plenty of background information. As you’ll see, functional programming
is not only a very effective way to approach concurrent programming, which we’ll
explore in depth in Chapter 9, but functional programming can also improve your
objects.

Of course, we can’t provide an exhaustive introduction to functional programming. To
learn more about it, [O’Sullivan2009] has a more detailed introduction in the context
of the Haskell language. [Abelson1996], [VanRoy2004], and [Turbak2008] offer thor-
ough introductions to general programming approaches, including functional pro-
gramming. Finally, [Okasaki1998] and [Rabhi1999] discuss functional data structures
and algorithms in detail.

What Is Functional Programming?
Don’t all programming languages have functions of some sort? Whether they are called
methods, procedures, or GOTOs, programmers are always dealing in functions.

165

Functional programming is based on the behavior of functions in the mathematical
sense, with all the implications that starting point implies.

Functions in Mathematics
In mathematics, functions have no side effects. Consider the classic function sin(x):

y = sin(x)

No matter how much work sin(x) does, all the results are returned and assigned to y.
No global state of any kind is modified internally by sin(x). Hence, we say that such
a function is free of side effects, or pure.

This property simplifies enormously the challenge of analyzing, testing, and debugging
a function. You can do these things without having to know anything about the context
in which the function is invoked, except for any other functions it might call. However,
you can analyze them in the same way, working bottom up to verify the whole “stack.”

This obliviousness to the surrounding context is known as Referential Transparency.
You can call such a function anywhere and be confident that it will always behave the
same way. If no global state is modified, concurrent invocation of the function is
straightforward and reliable.

In functional programming, you can compose functions from other functions. For ex-
ample, tan(x) = sin(x)/cos(x). An implication of composability is that functions can
be treated as values. In other words, functions are first-class, just like data. You can
assign functions to variables. You can pass functions to other functions. You can return
functions as values from functions. In the functional paradigm, functions become a
primitive type, a building block that’s just as essential to the work of programming as
integers or strings.

When a function takes other functions as arguments or returns a function, it is called
a higher-order function. In mathematics, two examples of higher-order functions from
calculus are derivation and integration.

Variables that Aren’t
The word “variable” takes on a new meaning in functional programming. If you come
from a procedural or object-oriented programming background, you are accustomed
to variables that are mutable. In functional programming, variables are immutable.

This is another consequence of the mathematical orientation. In the expression y =
sin(x), once you pick x, then y is fixed. As another example, if you increment the integer
3 by 1, you don’t “modify the 3 object,” you create a new value to represent 4.

To be more precise, it is the values that are immutable. Functional programming lan-
guages prevent you from assigning a new value to a variable that already has a value.

166 | Chapter 8: Functional Programming in Scala

Immutability is difficult when you’re not used to it. If you can’t change a variable, then
you can’t have loop counters, for example. We’re accustomed to objects that change
their state when we call methods on them. Learning to think in immutable terms takes
some effort.

However, immutability has enormous benefits for concurrency. Almost all the difficulty
of multithreaded programming lies in synchronizing access to shared, mutable state. If
you remove mutability, then the problems essentially go away. It is the combination of
referentially transparent functions and immutable values that make functional pro-
gramming compelling as a better way to write concurrent software.

These qualities benefit programs in other ways. Almost all the constructs we have
invented in 60-odd years of computer programming have been attempts to manage
complexity. Higher-order functions and referential transparency provide very flexible
building blocks for composing programs.

Immutability greatly reduces regression bugs, many of which are caused by uninten-
ded state changes in one part of a program due to intended changes in another part.
There are other contributors to such non-local effects, but mutability is one of the most
important.

It’s common in object-oriented designs to encapsulate access to data structures in ob-
jects. If these structures are mutable, we can’t simply share them with clients. We have
to add special accessor methods to control access, so clients can’t modify them outside
our control. These additions increase code size, which increases the testing and main-
tenance burden, and they increase the effort required by clients to understand the ad
hoc features of our APIs.

In contrast, when we have immutable data structures, many of these problems simply
go away. We can provide access to collections without fear of data loss or corruption.
Of course, the general principles of minimal coupling still apply; should clients care if
a Set or List is used, as long foreach is available?

Immutable data also implies that lots of copies will be made, which can be expensive.
Functional data structures optimize for this problem (see [Okasaki1998]) and many of
the built-in Scala types are efficient at creating new copies from existing copies.

It’s time to dive into the practicalities of functional programming in Scala. We’ll discuss
other aspects and benefits of the approach as we proceed.

Functional Programming in Scala
As a hybrid object-functional language, Scala does not require functions to be pure,
nor does it require variables to be immutable. It does, however, encourage you to write
your code this way whenever possible. You have the freedom to use procedural or
object-oriented techniques when and where they seem most appropriate.

Functional Programming in Scala | 167

Though functional languages are all about eliminating side effects, a language that
never allowed for side effects would be useless. Input and output (IO) are inherently
about side effects, and IO is essential to all programming tasks. For this reason, all
functional languages provide mechanisms for performing side effects in a controlled
way.

Scala doesn’t restrict what you can do, but we encourage you to use immutable values
and pure functions and methods whenever possible. When mutability and side effects
are necessary, pursue them in a “principled” way, isolated in well-defined modules and
focused on individual tasks.

If you’re new to functional programming, keep in mind that it’s easy to fall back to old
habits. We encourage you to master the functional side of Scala and to learn to use it
effectively.

A function that returns Unit implies that the function has pure side ef-
fects, meaning that if it does any useful work, that work must be all side
effects, since the function doesn’t return anything.

We’ve seen many examples of higher-order functions and composability in Scala. For
example, List.map takes a function to transform each element of the list to something
else:

// code-examples/FP/basics/list-map-example-script.scala

List(1, 2, 3, 4, 5) map { _ * 2 }

Recall that _ * 2 is a function literal that is shorthand for i => i * 2. For each argument
to the function, you can use _ if the argument is used only once. We also used the infix
operator notation to invoke map. Here’s an example that “reduces” the same list by
multiplying all the elements together:

// code-examples/FP/basics/list-reduceLeft-example-script.scala

List(1, 2, 3, 4, 5) reduceLeft { _ * _ }

The first _ represents the argument that is accumulating the value of the reduction, and
the second _ represents the current element of the list.

Both examples successfully “looped” through the list without the use of a mutable
counter to track iterations. Most containers in the Scala library provide functionally
pure iteration methods. In other cases, recursion is the preferred way to traverse a data
structure or perform an algorithm. We’ll return to this topic in “Recur-
sion” on page 170.

168 | Chapter 8: Functional Programming in Scala

Function Literals and Closures
Let’s expand our previous map example a bit:

// code-examples/FP/basics/list-map-closure-example-script.scala

var factor = 3
val multiplier = (i:Int) => i * factor

val l1 = List(1, 2, 3, 4, 5) map multiplier

factor = 5
val l2 = List(1, 2, 3, 4, 5) map multiplier

println(l1)
println(l2)

We defined a variable, factor, to use as the multiplication factor, and we pulled out
the previous anonymous function into a value called multiplier that now uses
factor. Then we map over a list of integers, as we did before. After the first call to
map, we change factor and map again. Here is the output:

List(3, 6, 9, 12, 15)
List(5, 10, 15, 20, 25)

Even though multiplier was an immutable function value, its behavior changed when
factor changed.

There are two free variables in multiplier: i and factor. One of them, i, is a formal
parameter to the function. Hence, it is bound to a new value each time multiplier is
called.

However, factor is not a formal parameter, but a reference to a variable in the enclosing
scope. Hence, the compiler creates a closure that encompasses (or “closes over”)
multiplier and the external context of the unbound variables multiplier references,
thereby binding those variables as well.

This is why the behavior of multiplier changed after changing factor. It references
factor and reads its current value each time. If a function has no external references,
then it is trivially closed over itself. No external context is required.

Purity Inside Versus Outside
If we called sin(x) thousands of times with the same value of x, it would be wasteful if
it calculated the same value every single time. Even in “pure” functional libraries, it is
common to perform internal optimizations like caching previously computed values
(sometimes called memoization). Caching introduces side effects, as the state of the
cache is modified.

However, this lack of purity should be opaque to the user (except perhaps in terms of
the performance impact). If you are designing functional libraries, ensure that they

Functional Programming in Scala | 169

preserve the purity of their abstractions, including the behavior of referential transpar-
ency and its implications for concurrency.

You can see examples of functional libraries with mutable internals in the Scala library.
The methods in List often use mutable local variables for efficient traversal. The local
variables are thread-safe, as are the traversals, since Lists themselves are immutable.

Recursion
Recursion plays a larger role in pure functional programming than in imperative pro-
gramming, in part because of the restriction that variables are immutable. For example,
you can’t have loop counters, which would change on each pass through a loop. One
way to implement looping in a purely functional way is with recursion.

Calculating factorials provides a good example. Here is an imperative loop
implementation:

// code-examples/FP/recursion/factorial-loop-script.scala

def factorial_loop(i: BigInt): BigInt = {
 var result = BigInt(1)
 for (j <- 2 to i.intValue)
 result *= j
 result
}

for (i <- 1 to 10)
 format("%s: %s\n", i, factorial_loop(i))

Both the loop counter j and the result are mutable variables. (For simplicity, we’re
ignoring input numbers that are less than or equal to zero.) The output of the script is
the following:

1: 1
2: 2
3: 6
4: 24
5: 120
6: 720
7: 5040
8: 40320
9: 362880
10: 3628800

Here’s a first pass at a recursive implementation:

// code-examples/FP/recursion/factorial-recur1-script.scala

def factorial(i: BigInt): BigInt = i match {
 case _ if i == 1 => i
 case _ => i * factorial(i - 1)
}

170 | Chapter 8: Functional Programming in Scala

for (i <- 1 to 10)
 format("%s: %s\n", i, factorial(i))

The output is the same, but now there are no mutable variables. Recursion not only
helps us avoid mutable variables, it is also the most natural way to express some
functions, particularly mathematical functions. The recursive definition in our second
factorial is structurally similar to a definition for factorials that you might see in a
mathematics book.

However, there are two potential problems with recursion: the performance overhead
of repeated function invocations and the risk of stack overflow.

Performance problems in a recursive scenario can sometimes be addressed with memo-
ization, but care should be taken that the space requirements of caching don’t outweigh
the performance benefits.

Stack overflow can be avoided by converting the recursive invocation into a loop of
some kind. In fact, the Scala compiler can do this conversion for you for some kinds of
recursive invocations, which we describe next.

Tail Calls and Tail-Call Optimization
A particular kind of recursion is called tail-call recursion, which occurs when a function
calls itself as its final operation. Tail-call recursion is very important because it is the
easiest kind of recursion to optimize by conversion into a loop. Loops eliminate the
potential of a stack overflow, and they improve performance by eliminating the recur-
sive function call overhead. While tail recursion optimizations are not yet supported
natively on the JVM, scalac can do them.

However, our factorial example is not a tail recursion, because factorial calls itself and
then does a multiplication with the results. There is a way to implement factorial in
a tail recursive way. We actually saw an implementation in “Nesting Method Defini-
tions” on page 28. However, that example didn’t use some constructs we’ve learned
about since, such as for comprehensions and pattern matching. So, here’s a new im-
plementation of factorial, calculated with tail-call recursion:

// code-examples/FP/recursion/factorial-recur2-script.scala

def factorial(i: BigInt): BigInt = {
 def fact(i: BigInt, accumulator: BigInt): BigInt = i match {
 case _ if i == 1 => accumulator
 case _ => fact(i - 1, i * accumulator)
 }
 fact(i, 1)
}

for (i <- 1 to 10)
 format("%s: %s\n", i, factorial(i))

Tail Calls and Tail-Call Optimization | 171

This script produces the same output as before. Now, factorial does all the work with
a nested method, fact, that is tail recursive because it passes an accumulator argument
to hold the computation in progress. This argument is computed with a multiplication
before the recursive call to fact, which is now the very last thing that is done. In our
previous implementation, this multiplication was done after the call to fact. When we
call fact(1), we simply return the accumulated value.

If you call our original non-tail recursive implementation of factorial with a large
number—say 10,000—you’ll cause a stack overflow on a typical desktop computer.
The tail-recursive implementation works successfully, returning a very large number.

This idiom of nesting a tail-recursive function that uses an accumulator is a very useful
technique for converting many recursive algorithms into tail recursions that can be
optimized into loops by scalac.

The tail-call optimization won’t be applied when a method that calls
itself might be overridden in a derived type. The method must be private
or final, defined in an object, or nested in another method (like fact
earlier). The new @tailrec annotation in version 2.8 will trigger an error
if the compiler can’t optimize the annotated method. (See “Annota-
tions” on page 289.)

Trampoline for Tail Calls
A trampoline is a loop that works through a list of functions, calling each one in turn.
The metaphor of bouncing the functions off a trampoline is the source of the name.

Consider a kind of recursion where a function A doesn’t call itself recursively, but in-
stead it calls another function B, which calls A, which calls B, etc. This kind of back-
and-forth recursion can also be converted into a loop using a trampoline. Note that
trampolines impose a performance overhead, but they are ideal for pure functional
recursions (versus an imperative equivalent) that would otherwise exhaust the stack.

Support for this optimization is planned for Scala version 2.8, although it has not yet
been implemented at the time of this writing.

Functional Data Structures
There are several data structures that are common in functional programming, most
of which are containers, like collections. Languages like Erlang rely on very few types,
while other functional languages provide a richer type system.

The common data structures support the same subset of higher-order functions for
read-only traversal and access to the elements in the data structures. These features
make them suitable as “protocols” for minimizing the coupling between components,
while supporting data exchange.

172 | Chapter 8: Functional Programming in Scala

In fact, these data structures and their operations are so useful that many languages
support them, including those that are not considered functional languages, like Java
and Ruby. Java doesn’t support higher-order functions directly. Instead, function val-
ues have to be wrapped in objects. Ruby uses procs and lambdas as function values.

Lists in Functional Programming
Lists are the most common data structure in functional programming. They are the
core of the first functional programming language, Lisp.

In the interest of immutability, a new list is created when you add an element to a list.
It is conventional to prepend the new element to the list, as we’ve seen before:

// code-examples/FP/datastructs/list-script.scala

val list1 = List("Programming", "Scala")
val list2 = "People" :: "should" :: "read" :: list1
println(list2)

Because the :: operator binds to the right, the definition of list2 is equivalent to both
of the following variations:

val list2 = ("People" :: ("should" :: ("read" :: list1)))
val list2 = list1.::("read").::("should").::("People")

In terms of performance, prepending is O(1). We’ll see why when we dive into Scala’s
implementation of List in “A Closer Look at Lists” on page 261, after we have learned
more about parameterized types in Scala.

Unlike some of the other collections, Scala only defines an immutable List. However,
it also defines some mutable list types, such as ListBuffer and LinkedList

Maps in Functional Programming
Perhaps the second most common data structure is the map, referred to as a hash or
dictionary in other languages, and not to be confused with the map function we saw
earlier. Maps are used to hold pairs of keys and values.

In the interest of minimalism, maps could be implemented with lists. Every even ele-
ment in the list (counting from zero) could be a key, followed by the value in the next
odd position. In practice, maps are usually implemented in other ways for efficiency.

Scala supports the special initialization syntax we saw previously:

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 // ...
 "Wyoming" -> "Cheyenne")

Functional Data Structures | 173

The scala.collection.Map[A,+B] trait only defines methods for reading the Map. There
are derived traits for immutable and mutable maps, scala.collection.immuta
ble.Map[A,+B] and scala.collection.mutable.Map[A,B], respectively. They define +
and - operators for adding and removing elements, and ++ and -- operators for adding
and removing elements defined in Iterators of Pairs, where each Pair is a key-value
pair.

You might have noticed that the + does not appear in front of the B type
parameters for scala.collection.mutable.Map. You’ll see why in “Var-
iance of Mutable Types” on page 255.

Sets in Functional Programming
Sets are like lists, but they require each element to be unique. Sets could also be im-
plemented using lists, as long as the equivalent of the list “cons” operator (::) first
checks that the element doesn’t already exist in the storage list. This property means
that element insertion would be O(N) if a storage list were used, and the order of the
elements in the set wouldn’t necessarily match the order of “insertion” operations. In
practice, sets are usually implemented with more efficient data structures.

Just as for Map, the scala.collection.Set[A] trait only defines methods for reading the
Set. There are derived traits for immutable and mutable sets, scala.collec
tion.immutable.Set[A] and scala.collection.mutable.Set[A], respectively. They de-
fine + and - operators for adding and removing elements, and ++ and -- operators for
adding and removing elements defined in Iterators (which could be other sets, lists,
etc.).

Other Data Structures in Functional Programming
Other familiar data structures, like Tuples and Arrays, will appear in functional lan-
guages. Typically, they’re used to provide some convenient feature not supported by a
more common functional type. In most cases they could be replaced with lists.

Traversing, Mapping, Filtering, Folding, and Reducing
The functional collections we just discussed—lists, maps, sets, as well as tuples and
arrays—all support several common operations based on read-only traversal. In fact,
this uniformity can be exploited if any “container” type also supports these operations.
For example, an Option contains zero or one elements, if it is a None or Some, respectively.

174 | Chapter 8: Functional Programming in Scala

Traversal
The standard traversal method for Scala containers is foreach, which is defined by the
Iterable traits that the containers mix in. It is O(N) in the number of elements. Here
is an example of its use for lists and maps:

// code-examples/FP/datastructs/foreach-script.scala

List(1, 2, 3, 4, 5) foreach { i => println("Int: " + i) }

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 "Wyoming" -> "Cheyenne")

stateCapitals foreach { kv => println(kv._1 + ": " + kv._2) }

The signature of foreach is the following:

trait Iterable[+A] {
 ...
 def foreach(f : (A) => Unit) : Unit = ...
 ...
}

foreach is a higher-order function that takes a function argument: the operation to
perform on each element. Note that for a map, A is actually a tuple, as shown in the
example. Also, foreach returns Unit. foreach is not intended to create new collections;
we’ll see examples of operations that create collections shortly.

Once you have foreach, you can implement all the other traversal operations we’ll
discuss next, and more. A look at Iterable will show that it supports methods for
filtering collections, finding elements that match specified criteria, calculating the
number of elements, and so forth.

The methods we’ll discuss next are hallmarks of functional programming: mapping,
filtering, folding, and reducing.

Mapping
We’ve encountered the map method before. It returns a new collection of the same size
as the original collection. It is also a member of Iterable, and its signature is:

trait Iterable[+A] {
 ...
 def map[B](f : (A) => B) : Iterable[B] = ...
 ...
}

Traversing, Mapping, Filtering, Folding, and Reducing | 175

The passed-in function (f) can transform an original element of type A to a new type
B. Here is an example:

// code-examples/FP/datastructs/map-script.scala

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 "Wyoming" -> "Cheyenne")

val lengths = stateCapitals map { kv => (kv._1, kv._2.length) }
println(lengths)

This script produces the output ArrayBuffer((Alabama,10), (Alaska,6), (Wyoming,
8)). That is, we convert the Pair[String,String] elements to an ArrayBuffer of
Pair[String,Int] elements. Where did the ArrayBuffer come from? It turns out that
Iterable.map creates and returns an ArrayBuffer as the new Iterable collection.

This brings up a general conflict between immutable types and object-oriented type
hierarchies. If a base type creates a new instance on modification, how does it know
what kind of type to create?

You could solve this problem two ways. First, you could have each type in the hierarchy
override methods like map to return an instance of their own type. This approach is
error-prone, though, as it would be easy to forget to override all such methods when a
new type is added.

Even if you always remember to override each method, you have the dilemma of how
to implement the override. Do you call the super method to reuse the algorithm, then
iterate through the returned instance to create a new instance of the correct type? That
would be inefficient. You could copy and paste the algorithm into each override, but
that creates issues of code bloat, maintainability, and skew.

There’s an alternative approach: don’t even try. How is the new instance that is returned
actually used? Do we really care if it has the “wrong” type? Keep in mind that all we
usually care about are the low-level abstractions like lists, maps, and sets. In the case
of functional data structures, the derived types we might implement using object-
oriented inheritance are most often implementation optimizations. The Scala type hi-
erarchy for containers does have a few levels of abstractions at the bottom, e.g.,
Collection extends Iterable extends AnyRef, but above Collection are Seq (parent of
List), Map, Set, etc.

That said, if you really need a Map, you can create one easily enough:

// code-examples/FP/datastructs/map2-script.scala

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 "Wyoming" -> "Cheyenne")

val map2 = stateCapitals map { kv => (kv._1, kv._2.length) }

176 | Chapter 8: Functional Programming in Scala

// val lengths = Map(map2) // ERROR: won't work
val lengths = Map[String,Int]() ++ map2

println(lengths)

The commented-out line suggests that it would be nice if you could simply pass the
new Iterable to Map.apply, but this doesn’t work. Here is the signature of Map.apply:

object Map {
 ...
 def apply[A, B](elems : (A, B)*) : Map[A, B] = ...
 ...
}

It expects a variable argument list, not an Iterable. However, we can create an empty
map of the right type and then add the new Iterable to it, using the ++ method, which
returns a new Map.

So, we can get the Map we want when we must have one. While it would be nice if
methods like map returned the same collection type, we saw that there is no easy way
to do this. Instead, we accept that map and similar methods return an abstraction like
Iterable and then rely on the specific subtypes to take Iterables as input arguments
for populating the collection.

A related Map operation is flatMap, which can be used to “flatten” a hierarchical data
structure, remove “empty” elements, etc. Hence, unlike map, it may not return a new
collection of the same size as the original collection:

// code-examples/FP/datastructs/flatmap-script.scala

val graph = List(
 "a", List("b1", "b2", "b3"), List("c1", List("c21", Nil, "c22"), Nil, "e")
)

def flatten(list: List[_]): List[_] = list flatMap {
 case head :: tail => head :: flatten(tail)
 case Nil => Nil
 case x => List(x)
}

println(flatten(graph))

This script reduces the hierarchical graph to List(a, b1, b2, b3, c1, c21, c22, e).
Notice that the Nil elements have been removed. We used List[_] because we won’t
know what the type parameters are for any embedded lists when we’re traversing the
outer list, due to type erasure.

Here is the signature for flatMap, along with map, for comparison:

trait Iterable[+A] {
 ...
 def map[B] (f : (A) => B) : Iterable[B] = ...
 def flatMap[B](f : (A) => Iterable[B]) : Iterable[B]

Traversing, Mapping, Filtering, Folding, and Reducing | 177

 ...
}

Each pass must return an Iterable[B], not a B. After going through the collection,
flatMap will “flatten” all those Iterables into one collection. Note that flatMap won’t
flatten elements beyond one level. If our function literal leaves nested lists intact, they
won’t be flattened for us.

Filtering
It is common to traverse a collection and extract a new collection from it with elements
that match certain criteria:

// code-examples/FP/datastructs/filter-script.scala

val stateCapitals = Map(
 "Alabama" -> "Montgomery",
 "Alaska" -> "Juneau",
 "Wyoming" -> "Cheyenne")

val map2 = stateCapitals filter { kv => kv._1 startsWith "A" }

println(map2)

There are several different kinds of methods defined in Iterable for filtering or other-
wise returning part of the original collection (comments adapted from the Scaladocs):

trait Iterable[+A] {
 ...
 // Returns this iterable without its n first elements. If this iterable
 // has less than n elements, the empty iterable is returned.
 def drop (n : Int) : Collection[A] = ...

 // Returns the longest suffix of this iterable whose first element does
 // not satisfy the predicate p.
 def dropWhile (p : (A) => Boolean) : Collection[A] = ...

 // Apply a predicate p to all elements of this iterable object and
 // return true, iff there is at least one element for which p yields true.
 def exists (p : (A) => Boolean) : Boolean = ...

 // Returns all the elements of this iterable that satisfy the predicate p.
 // The order of the elements is preserved.
 def filter (p : (A) => Boolean) : Iterable[A] = ...

 // Find and return the first element of the iterable object satisfying a
 // predicate, if any.
 def find (p : (A) => Boolean) : Option[A] = ...

 // Returns index of the first element satisying a predicate, or -1.
 def findIndexOf (p : (A) => Boolean) : Int = ...

 // Apply a predicate p to all elements of this iterable object and return
 // true, iff the predicate yields true for all elements.

178 | Chapter 8: Functional Programming in Scala

 def forall (p : (A) => Boolean) : Boolean = ...

 // Returns the index of the first occurence of the specified object in
 // this iterable object.
 def indexOf [B >: A](elem : B) : Int = ...

 // Partitions this iterable in two iterables according to a predicate.
 def partition (p : (A) => Boolean) : (Iterable[A], Iterable[A]) = ...

 // Checks if the other iterable object contains the same elements.
 def sameElements [B >: A](that : Iterable[B]) : Boolean = ...

 // Returns an iterable consisting only over the first n elements of this
 // iterable, or else the whole iterable, if it has less than n elements.
 def take (n : Int) : Collection[A] = ...

 // Returns the longest prefix of this iterable whose elements satisfy the
 // predicate p.
 def takeWhile (p : (A) => Boolean) : Iterable[A] = ...
}

Types like Map and Set have additional methods.

Folding and Reducing
We’ll discuss folding and reducing in the same section, as they’re similar. Both are
operations for “shrinking” a collection down to a smaller collection or a single value.

Folding starts with an initial “seed” value and processes each element in the context of
that value. In contrast, reducing doesn’t start with a user-supplied initial value. Rather,
it uses the first element as the initial value:

// code-examples/FP/datastructs/foldreduce-script.scala

List(1,2,3,4,5,6) reduceLeft(_ + _)

List(1,2,3,4,5,6).foldLeft(10)(_ * _)

This script reduces the list of integers by adding them together, returning 21. It then
folds the same list using multiplication with a seed of 10, returning 7,200.

Reducing can’t work on an empty collection, since there would be nothing to return.
In this case, an exception is thrown. Folding on an empty collection will simply return
the seed value.

Folding also offers more options for the final result. Here is a “fold” operation that is
really a map operation:

// code-examples/FP/datastructs/foldleft-map-script.scala

List(1, 2, 3, 4, 5, 6).foldLeft(List[String]()) {
 (list, x) => ("<" + x + ">") :: list
}.reverse

Traversing, Mapping, Filtering, Folding, and Reducing | 179

It returns List(<1>, <2>, <3>, <4>, <5>, <6>). Note that we had to call reverse on
the result to get back a list in the same order as the input list.

Here are the signatures for the various fold and reduce operations in Iterable:

trait Iterable[+A] {
 ...
 // Combines the elements of this iterable object together using the
 // binary function op, from left to right, and starting with the value z.
 def foldLeft [B](z : B)(op : (B, A) => B) : B

 // Combines the elements of this list together using the binary function
 // op, from right to left, and starting with the value z.
 def foldRight [B](z : B)(op : (A, B) => B) : B

 // Similar to foldLeft but can be used as an operator with the order of
 // list and zero arguments reversed. That is, z /: xs is the same as
 // xs foldLeft z
 def /: [B](z : B)(op : (B, A) => B) : B

 // An alias for foldRight. That is, xs :\ z is the same as xs foldRight z
 def :\ [B](z : B)(op : (A, B) => B) : B

 // Combines the elements of this iterable object together using the
 // binary operator op, from left to right
 def reduceLeft [B >: A](op : (B, A) => B) : B

 // Combines the elements of this iterable object together using the
 // binary operator op, from right to left
 def reduceRight [B >: A](op : (A, B) => B) : B

Many people consider the operator forms, :\ for foldRight and /: for foldLeft, to be
a little too obscure and hard to remember. Don’t forget the importance of communi-
cating with your readers when writing code.

Why are there left and right forms of fold and reduce? For the first examples we showed,
adding and multiplying a list of integers, they would return the same result. Consider
a foldRight version of our last example that used fold to map the integers to strings:

// code-examples/FP/datastructs/foldright-map-script.scala

List(1, 2, 3, 4, 5, 6).foldRight(List[String]()) {
 (x, list) => ("<" + x + ">") :: list
}

This script produces List(<1>, <2>, <3>, <4>, <5>, <6>), without having to call
reverse, as we did before. Note also that the arguments to the function literal are re-
versed compared to the arguments for foldLeft, as required by the definition of
foldRight.

Both foldLeft and reduceLeft process the elements from left to right. Here is the
foldLeft sequence for List(1,2,3,4,5,6).foldLeft(10)(_ * _):

((((((10 * 1) * 2) * 3) * 4) * 5) * 6)
((((((10) * 2) * 3) * 4) * 5) * 6)

180 | Chapter 8: Functional Programming in Scala

(((((20) * 3) * 4) * 5) * 6)
((((60) * 4) * 5) * 6)
(((240) * 5) * 6)
((1200) * 6)
(7200)

Here is the foldRight sequence:

(1 * (2 * (3 * (4 * (5 * (6 * 10))))))
(1 * (2 * (3 * (4 * (5 * (60))))))
(1 * (2 * (3 * (4 * (300)))))
(1 * (2 * (3 * (1200))))
(1 * (2 * (3600)))
(1 * (7200))
(7200)

It turns out that foldLeft and reduceLeft have one very important advantage over their
“right-handed” brethren: they are tail-call recursive, and as such they can benefit from
tail-call optimization.

If you stare at the previous breakdowns for multiplying the integers, you can probably
see why they are tail-call recursive. Recall that a tail call must be the last operation in
an iteration. For each line in the foldRight sequence, the outermost multiplication can’t
be done until the innermost multiplications all complete, so the operation isn’t tail
recursive.

In the following script, the first line prints 1784293664, while the second line causes a
stack overflow:

// code-examples/FP/datastructs/reduceleftright-script.scala

println((1 to 1000000) reduceLeft(_ + _))
println((1 to 1000000) reduceRight(_ + _))

So why have both kinds of recursion? If you’re not worried about overflow, a right
recursion might be the most natural fit for the operation you are doing. Recall that
when we used foldLeft to map integers to strings, we had to reverse the result. That
was easy enough to do in that case, but in general, the result of a left recursion might
not always be easy to convert to the right form.

Functional Options
You’ll find the functional operations we’ve explored throughout the Scala library, and
not exclusively on collection classes. The always handy Option container supports
filter, map, flatMap, and other functionally oriented methods that are applied only if
the Option isn’t empty (that is, if it’s a Some and not a None).

Let’s see this in practice:

// code-examples/FP/datastructs/option-script.scala

val someNumber = Some(5)
val noneNumber = None

Traversing, Mapping, Filtering, Folding, and Reducing | 181

for (option <- List(noneNumber, someNumber)) {
 option.map(n => println(n * 5))
}

In this example, we attempt to multiply the contents of two Options by five. Normally,
trying to multiply a null value would result in an error. But because the implementation
of map on Option only applies the passed-in function when it’s non-empty, we don’t
have to worry about testing for the presence of a value or handling an exception when
we map over the None.

Functional operations on Options save us from extra conditional expressions or pattern
matching. Pattern matching, though, is a powerful tool within the context of functional
programming, as we’ll explore in the next section.

Pattern Matching
We’ve seen many examples of pattern matching throughout this book. We got our first
taste in “A Taste of Concurrency” on page 16, where we used pattern matching in our
Actor that drew geometric shapes. We discussed pattern matching in depth in “Pattern
Matching” on page 63.

Pattern matching is a fundamental tool in functional programming. It’s just as impor-
tant as polymorphism is in object-oriented programming, although the goals of the two
techniques are very different.

Pattern matching is an elegant way to decompose objects into their constituent parts
for processing. On the face of it, pattern matching for this purpose seems to violate the
goal of encapsulation that objects provide. Immutability, though, largely rectifies this
conflict. The risk that the parts of an object might be changed outside of the control of
the enclosing object is avoided.

For example, if we have a Person class that contains a list of addresses, we don’t mind
exposing that list to clients if the list is immutable. They can’t unexpectedly change the
list.

However, exposing constituent parts potentially couples clients to the types of those
parts. We can’t change how the parts are implemented without breaking the clients. A
way to minimize this risk is to expose the lowest-level abstractions possible. When
clients access a person’s addresses, do they really need to know that they are stored in
a List, or is it sufficient to know that they are stored in an Iterable or Seq? If so, then
we can change the implementation of the addresses as long as they still support those
abstractions. Of course, we’ve known for a long time in object-oriented programming
that you should only couple to abstractions, not concrete details (for example, see
[Martin2003]).

182 | Chapter 8: Functional Programming in Scala

Functional pattern matching and object-oriented polymorphism are powerful
complements to each other. We saw this in the Actor example in “A Taste of Concur-
rency” on page 16, where we matched on the Shape abstraction, but called the poly-
morphic draw operation.

Partial Functions
You’ve seen partially applied functions, or partial functions, throughout this book.
When you’ve seen an underscore passed to a method, you’ve probably seen partial
application at work.

Partial functions are expressions in which not all of the arguments defined in a function
are supplied as parameters to the function. In Scala, partial functions are used to bundle
up a function, including its parameters and return type, and assign that function to a
variable or pass it as an argument to another function.

This is a bit confusing until we see it in practice:

// code-examples/FP/partial/partial-script.scala

def concatUpper(s1: String, s2: String): String = (s1 + " " + s2).toUpperCase

val c = concatUpper _
println(c("short", "pants"))

val c2 = concatUpper("short", _: String)
println(c2("pants"))

Calling concatUpper with an underscore (_) turns the method into a function value.
In the first part of the example, we’ve assigned a partially applied version of
concatUpper to the value c. We then apply it, implicitly calling the apply method on c
by passing parameters to it directly. The returned value is then printed.

In the second part, we’ve specified the first parameter to concatUpper but not the sec-
ond, although we have specified the type of the second parameter. We’ve assigned this
variant to a second value, c2. To produce the same output as we saw before, we need
only pass in a single value when we apply c2. We’ve applied part of the function in the
assignment to c2, and we “fill in the blanks” when we call c2 on the next line.

We’ve seen partially applied functions without the underscore syntax as well:

List("short", "pants").map(println)

In this example, println is the partially applied function. It’s applied when invoked by
mapping over each element in the list. Because the map operation expects a function
as an argument, we don’t need to write map(println _). The trailing underscore that
turns println into a function value is implied, in this context.

Another way of thinking of partial functions is as functions that will inform you when
you supply them with parameters that are out of their domain. Every partial function

Partial Functions | 183

is, as you might guess, of the type PartialFunction. This trait defines a method
orElse that takes another PartialFunction. Should the first partial function not apply,
the second will be invoked.

Again, this is easier understood in practice:

// code-examples/FP/partial/orelse-script.scala

val truthier: PartialFunction[Boolean, String] = { case true => "truthful" }
val fallback: PartialFunction[Boolean, String] = { case x => "sketchy" }
val tester = truthier orElse fallback

println(tester(1 == 1))
println(tester(2 + 2 == 5))

In this example, tester is a partial function composed of two other partial functions,
truthier and fallback. In the first println statement, truthier is executed because the
partial function’s internal case matches. In the second, fallback is executed because
the value of the expression is outside of the domain of truthier.

The case statements we’ve seen through our exploration of Scala are expanded inter-
nally to partially applied functions. The functions provide the abstract method
isDefinedAt, a feature of the PartialFunction trait used to specify the boundaries of a
partial function’s domain:

// code-examples/FP/partial/isdefinedat-script.scala

val pantsTest: PartialFunction[String, String] = {
 case "pants" => "yes, we have pants!"
}

println(pantsTest.isDefinedAt("pants"))
println(pantsTest.isDefinedAt("skort"))

Here, our partial function is a test for the string "pants". When we inquire as to whether
the string "pants" is defined for this function, the result is true. But for the string
"skort", the result is false. Were we defining our own partial function, we could pro-
vide an implementation of isDefinedAt that performs any arbitrary test for the boun-
daries of our function.

Currying
Just as you encountered partially applied functions before we defined them, you’ve also
seen curried functions. Named after mathematician Haskell Curry (from whom the
Haskell language also get its name), currying transforms a function that takes multiple
parameters into a chain of functions, each taking a single parameter.

In Scala, curried functions are defined with multiple parameter lists, as follows:

def cat(s1: String)(s2: String) = s1 + s2

Of course, we could define more than two parameters on a curried function, if we like.

184 | Chapter 8: Functional Programming in Scala

We can also use the following syntax to define a curried function:

def cat(s1: String) = (s2: String) => s1 + s2

While the previous syntax is more readable, in our estimation, using this syntax elim-
inates the requirement of a trailing underscore when treating the curried function as a
partially applied function.

Calling our curried string concatenation function looks like this in the Scala REPL:

scala> cat("foo")("bar")
res1: java.lang.String = foobar

We can also convert methods that take multiple parameters into a curried form with
the Function.curried method:

scala> def cat(s1: String, s2: String) = s1 + s2
cat: (String,String)java.lang.String

scala> val curryCat = Function.curried(cat _)
curryCat: (String) => (String) => java.lang.String = <function>

scala> cat("foo", "bar") == curryCat("foo")("bar")
res2: Boolean = true

In this example, we transform a function that takes two arguments, cat, into its curried
equivalent that takes multiple parameter lists. If cat had taken three parameters, its
curried equivalent would take three lists of arguments, and so on. The two forms are
functionally equivalent, as demonstrated by the equality test, but curryCat can now be
used as the basis of a partially applied function as well:

scala> val partialCurryCat = curryCat("foo")(_)
partialCurryCat: (String) => java.lang.String = <function>

scala> partialCurryCat("bar")
res3: java.lang.String = foobar

In practice, the primary use for currying is to specialize functions for particular types
of data. You can start with an extremely general case, and use the curried form of a
function to narrow down to particular cases.

As a simple example of this approach, the following code provides specialized forms
of a base function that handles multiplication:

def multiplier(i: Int)(factor: Int) = i * factor
val byFive = multiplier(5) _
val byTen = multiplier(10) _

We start with multiplier, which takes two parameters: an integer, and another integer
to multiply the first one by. We then curry two special cases of multiplier into function
values. Note the trailing underscores, which indicate to the compiler that the preceding
expression is to be curried. In particular, the wildcard underscores indicate that the
remaining arguments (in this example, one argument) are unspecified.

Currying | 185

In the Scala console, we get predictable output when calling our curried functions:

scala> byFive(2)
res4: Int = 10

scala> byTen(2)
res5: Int = 20

We’ll revisit the curry method in “Function Types” on page 277.

As you can see, currying and partially applied functions are closely related concepts.
You may see them referred to almost interchangeably, but what’s important is their
application (no pun intended).

Implicits
There are times when you have an instance of one type and you need to use it in a
context where a different, but perhaps a similar type is required. For the “one-off” case,
you might create an instance of the required type using the state of the instance you
already have. However, for the general case, if there are many such occurrences in the
code, you would rather have an automated conversion mechanism.

A similar problem occurs when you call one or more functions repeatedly and have to
pass the same value to all the invocations. You might like a way of specifying a default
value for that parameter, so it is not necessary to specify it explicitly all the time.

The Scala keyword implicit can be used to support both needs.

Implicit Conversions
Consider the following code fragment:

val name: String = "scala"
println(name.capitalize.reverse)

It prints the following:

alacS

We saw in “The Predef Object” on page 145 that Predef defines the String type to be
java.lang.String, yet the methods capitalize and reverse aren’t defined on
java.lang.String. How did this code work?

The Scala library defines a “wrapper” class called scala.runtime.RichString that has
these methods, and the compiler converted the name string to it implicitly using a special
method defined in Predef called stringWrapper:

implicit def stringWrapper(x: String) = new runtime.RichString(x)

The implicit keyword tells the compiler it can use this method for an “implicit” con-
version from a String to a RichString, whenever the latter is required. The compiler
detected an attempt to call a capitalize method, and it determined that RichString

186 | Chapter 8: Functional Programming in Scala

has such a method. Then it looked within the current scope for an implicit method
that converts String to RichString, finding stringWrapper.

As we’ll see in “Views and View Bounds” on page 263, these conversion methods are
sometimes called views, in the sense that our stringWrapper conversion provides a view
from String to RichString.

Predef defines many other implicit conversion methods, most of which follow the
naming convention old2New, where old is the type of object available and New is the
desired type. However, there is no restriction on the names of conversion methods.
There are also a number of other Rich wrapper classes defined in the scala.runtime
package.

Here is a summary of the lookup rules used by the compiler to find and apply conversion
methods. For more details, see [ScalaSpec2009]:

1. No conversion will be attempted if the object and method combination type check
successfully.

2. Only methods with the implicit keyword are considered.

3. Only implicit methods in the current scope are considered, as well as implicit
methods defined in the companion object of the target type.

4. Implicit methods aren’t chained to get from the available type, through intermedi-
ate types, to the target type. Only a method that takes a single available type
instance and returns a target type instance will be considered.

5. No conversion is attempted if more than one possible conversion method could
be applied. There must be one and only one possibility.

What if you can’t define a conversion method in a companion object, to satisfy the
third rule, perhaps because you can’t modify or create the companion object? In this
case, define the method somewhere else and import it. Normally, you will define an
object with just the conversion method(s) needed. Here is an example:

// code-examples/FP/implicits/implicit-conversion-script.scala
import scala.runtime.RichString

class FancyString(val str: String)

object FancyString2RichString {
 implicit def fancyString2RichString(fs: FancyString) =
 new RichString(fs.str)
}

import FancyString2RichString._

val fs = new FancyString("scala")
println(fs.capitalize.reverse)

Implicits | 187

We can’t modify RichString or Predef to add an implicit conversion method for our
custom FancyString class. Instead, we define an object named FancyString2Rich
String and define the conversion method in it. We then import the contents of this
object and the converter gets invoked implicitly in the last line. The output of this script
is the following:

alacS

This pattern for effectively adding new methods to classes has been called Pimp My
Library (see [Odersky2006]).

Implicit Function Parameters
We saw in Chapter 2 that Scala version 2.8 adds support for default argument values,
like you find in other languages like Ruby and C++. There are two other ways to achieve
the same effect in all versions of Scala. The first is to use function currying, as we have
seen. The second way is to define implicit values, using the implicit keyword.

Let’s examine how implicit values work:

// code-examples/FP/implicits/implicit-parameter-script.scala
import scala.runtime.RichString

def multiplier(i: Int)(implicit factor: Int) {
 println(i * factor)
}

implicit val factor = 2

multiplier(2)
multiplier(2)(3)

Our multiplier takes two lists of parameters. The latter includes an integer value,
factor, marked implicit. This keyword informs the compiler to seek the value for
factor from the surrounding scope, if available, or to use whatever parameter has been
explicitly supplied to the function.

We’ve defined our own factor value in scope, and that value is used in the first call to
multiplier. In the second call, we’re explicitly passing in a value for factor and it
overrides the value in the surrounding scope.

Essentially, implicit function parameters behave as parameters with a default value,
with the key difference being that the value comes from the surrounding scope. Had
our factor value resided in a class or object, we would have had to import it into the
local scope. If the compiler can’t determine the value to use for an implicit parameter,
an error of “no implicit argument matching parameter” will occur.

188 | Chapter 8: Functional Programming in Scala

Final Thoughts on Implicits
Implicits can be perilously close to “magic.” When used excessively, they obfuscate the
code’s behavior for the reader. Also, be careful about the implementation of a conver-
sion method, especially if the return type is not explicitly declared. If a future change
to the method also changes the return type in some subtle way, the conversion may
suddenly fail to work. In general, implicits can cause mysterious behavior that is hard
to debug!

When deciding how to implement “default” values for method arguments, a major
advantage of using default argument values (in Scala version 2.8) is that the method
maintainer decides what to use as the default value. The implementation is more
straightforward and you avoid the “magic” of implicit methods. However, a disad-
vantage of using default argument values is that it might be desirable to use a different
“default” value based on the context in which the method is being called. Scala version
2.8 provides some flexibility, as you can use an expression for an argument, not just a
constant value. However, that flexibility might not be enough, in which case implicits
are a very flexible and powerful alternative.

Use implicits sparingly and cautiously. Also, consider adding an explicit
return type to “non-trivial” conversion methods.

Call by Name, Call by Value
Typically, parameters to functions are by-value parameters; that is, the value of the
parameter is determined before it is passed to the function. In most circumstances, this
is the behavior we want and expect.

But what if we need to write a function that accepts as a parameter an expression that
we don’t want evaluated until it’s called within our function? For this circumstance,
Scala offers by-name parameters.

A by-name parameter is specified by omitting the parentheses that normally accompany
a function parameter, as follows:

def myCallByNameFunction(callByNameParameter: => ReturnType)

Without this syntactic shortcut, this method definition would look like the following:

def myCallByNameFunction(callByNameParameter: () => ReturnType)

And what’s more, we would have to include those unsightly, empty parentheses in
every call to that method. Use of by-name parameters removes that requirement.

We can use by-name parameters to implement powerful looping constructs, among
other things. Let’s go crazy and implement our own while loop, throwing currying into
the mix:

Call by Name, Call by Value | 189

// code-examples/FP/overrides/call-by-name-script.scala

def whileAwesome(conditional: => Boolean)(f: => Unit) {
 if (conditional) {
 f
 whileAwesome(conditional)(f)
 }
}

var count = 0

whileAwesome(count < 5) {
 println("still awesome")
 count += 1
}

What would happen if we removed the arrow between conditional: and Boolean? The
expression count < 5 would be evaluated to true before being passed into our custom
while loop, and the message “still awesome” would be printed to the console indefi-
nitely. By delaying evaluation until conditional is called inside our function with a by-
name parameter, we get the behavior we expect.

Lazy Vals
In “Overriding Abstract and Concrete Fields in Traits” on page 114, we showed several
scenarios where the order of initialization for fields in override scenarios can be prob-
lematic. We discussed one solution, pre-initialized fields. Now we discuss the other
solution we mentioned previously, lazy vals.

Here is that example rewritten with a lazy val:

// code-examples/FP/overrides/trait-lazy-init-val-script.scala

trait AbstractT2 {
 println("In AbstractT2:")
 val value: Int
 lazy val inverse = { println("initializing inverse:"); 1.0/value }
 //println("AbstractT2: value = "+value+", inverse = "+inverse)
}

val c2d = new AbstractT2 {
 println("In c2d:")
 val value = 10
}

println("Using c2d:")
println("c2d.value = "+c2d.value+", inverse = "+c2d.inverse)

The is the output of the script:

In AbstractT2:
In c2d:
Using c2d:

190 | Chapter 8: Functional Programming in Scala

initializing inverse:
c2d.value = 10, inverse = 0.1

As before, we are using an anonymous inner class that implicitly extends the trait. The
body of the class, which initializes value, is evaluated after the trait’s body. However,
note that inverse is declared lazy, which means that the righthand side will be evaluated
only when inverse is actually used. In this case, that happens in the last println state-
ment. Only then is inverse initialized, using value, which is properly initialized at this
point.

Try uncommenting the println statement at the end of the AbstractT2 body. What
happens now?

In AbstractT2:
initializing inverse:
AbstractT2: value = 0, inverse = Infinity
In c2d:
Using c2d:
c2d.value = 10, inverse = Infinity

This println forces inverse to be evaluated inside the body of AbstractT2, before
value is initialized by the class body, thereby reproducing the problem we had before.

This example raises an important point; if other vals use the lazy val in the same class
or trait body, they should be declared lazy, too. Also, watch out for function calls in
the body that use the lazy val.

If a val is lazy, make sure all uses of the val are also lazy!

So, how is a lazy val different from a method call? In a method call, the body is executed
every time the method is invoked. For a lazy val, the initialization “body” is evaluated
only once, when the variable is used for the first time. This one-time evaluation makes
little sense for a mutable field. Therefore, the lazy keyword is not allowed on vars.
(They can’t really make use of it anyway.)

You can also use lazy vals to avoid costly initializations that you may not actually need
and to defer initializations that slow down application startup. They work well in con-
structors, where it’s clear to other programmers that all the one-time heavy lifting for
initializing an instance is done in one place.

Another use for laziness is to manage potentially infinite data structures where only a
manageable subset of the data will actually be used. In fact, mathematic notation is
inherently lazy. When we write the Fibonacci sequence, for example, we might write
it as an infinite sequence, something like this:

Fib = 1, 1, 2, 3, 5, 8, ...

Lazy Vals | 191

Some pure functional languages are lazy by default, so they mimic this behavior as
closely as possible. This can work without exhausting resources if the user never tries
to use more than a finite subset of these values. Scala is not lazy by default, but it does
offer support for working with infinite data structures. We’ll address this topic in
“Infinite Data Structures and Laziness” on page 285.

Recap: Functional Component Abstractions
When object-oriented programming went mainstream in the late ’80s and early ’90s,
there was great hope that it would usher in an era of reusable software components. It
didn’t really work out that way, except in some rare cases, like the windowing APIs of
various platforms.

Why did this not happen? There are certainly many reasons, but a likely source is the
fact that simple source or binary interoperability protocols never materialized that
would glue these components together. The richness of object APIs was the very factor
that undermined componentization.

Component models that have succeeded are all based on very simple foundations. In-
tegrated circuits (ICs) in electronics plug into buses with 2n signaling wires that are
boolean, either on or off. From that very simple protocol, the most explosive growth
of any industry in human history was born.

HTTP is another good example. With a handful of message types and a very simple
standard for message content, it set the stage for the Internet revolution. RESTful web
services built on top of HTTP are also proving successful as components, but they are
just complex enough that care is required to ensure that they work successfully.

So, is there hope for a binary or source-level component model? It probably won’t be
object-oriented, as we’ve seen. Rather, it could be more functional.

Components should interoperate by exchanging a few immutable data structures, e.g.,
lists and maps, that carry both data and “commands.” Such a component model would
have the simplicity necessary for success and the richness required to perform real work.
Notice how that sounds a lot like HTTP and REST.

In fact, the Actor model has many of these qualities, as we’ll explore in the next chapter.

192 | Chapter 8: Functional Programming in Scala

CHAPTER 9

Robust, Scalable Concurrency
with Actors

The Problems of Shared, Synchronized State
Concurrency isn’t easy. Getting a program to do more than one thing at a time has
traditionally meant hassling with mutexes, race conditions, lock contention, and the
rest of the unpleasant baggage that comes along with multithreading. Event-based
concurrency models alleviate some of these concerns, but can turn large programs into
a rat’s nest of callback functions. No wonder, then, that concurrent programming is a
task most programmers dread, or avoid altogether by retreating to multiple independ-
ent processes that share data externally (for example, through a database or message
queue).

A large part of the difficulty of concurrent programming comes down to state: how do
you know what your multithreaded program is doing, and when? What value does a
particular variable hold when you have 2 threads running, or 5, or 50? How can you
guarantee that your program’s many tendrils aren’t clobbering one another in a race to
take action? A thread-based concurrency paradigm poses more questions than it
answers.

Thankfully, Scala offers a reasonable, flexible approach to concurrency that we’ll
explore in this chapter.

Actors
Though you may have heard of Scala and Actors in the same breath, Actors aren’t a
concept unique to Scala. Actors, originally intended for use in Artificial Intelligence
research, were first put forth in 1973 (see [Hewitt1973] and [Agha1987]). Since then,
variations on the idea of Actors have appeared in a number of programming languages,
most notably in Erlang and Io. As an abstraction, Actors are general enough that they

193

can be implemented as a library (as in Scala), or as the fundamental unit of a compu-
tational system.

Actors in Abstract
Fundamentally, an Actor is an object that receives messages and takes action on those
messages. The order in which messages arrive is unimportant to an Actor, though some
Actor implementations (such as Scala’s) queue messages in order. An Actor might
handle a message internally, or it might send a message to another Actor, or it might
create another Actor to take action based on the message. Actors are a very high-level
abstraction.

Unlike traditional object systems (which, you might be thinking to yourself, have many
of the same properties we’ve described), Actors don’t enforce a sequence or ordering
to their actions. This inherent eschewing of sequentiality, coupled with independence
from shared global state, allow Actors to do their work in parallel. As we’ll see later on,
the judicious use of immutable data fits the Actor model ideally, and further aids in
safe, comprehensible concurrent programming.

Enough theory. Let’s see Actors in action.

Actors in Scala
At their most basic, Actors in Scala are objects that inherit from scala.actors.Actor:

// code-examples/Concurrency/simple-actor-script.scala

import scala.actors.Actor

class Redford extends Actor {
 def act() {
 println("A lot of what acting is, is paying attention.")
 }
}

val robert = new Redford
robert.start

As we can see, an Actor defined in this way must be both instantiated and started,
similar to how threads are handled in Java. It must also implement the abstract method
act, which returns Unit. Once we’ve started this simple Actor, the following sage advice
for thespians is printed to the console:

A lot of what acting is, is paying attention.

The scala.actors package contains a factory method for creating Actors that avoids
much of the setup in the above example. We can import this method and other con-
venience methods from scala.actors.Actors._. Here is a factory-made Actor:

194 | Chapter 9: Robust, Scalable Concurrency with Actors

// code-examples/Concurrency/factory-actor-script.scala

import scala.actors.Actor
import scala.actors.Actor._

val paulNewman = actor {
 println("To be an actor, you have to be a child.")
}

While a subclass that extends the Actor class must define act in order to be concrete,
a factory-produced Actor has no such limitation. In this shorter example, the body of
the method passed to actor is effectively promoted to the act method from our first
example. Predictably, this Actor also prints a message when run. Illuminating, but we
still haven’t shown the essential piece of the Actors puzzle: sending messages.

Sending Messages to Actors
Actors can receive any sort of object as a message, from strings of text to numeric types
to whatever classes you’ve cooked up in your programs. For this reason, Actors and
pattern matching go hand in hand. An Actor should only act on messages of familiar
types; a pattern match on the class and/or contents of a message is good defensive
programming and increases the readability of Actor code:

// code-examples/Concurrency/pattern-match-actor-script.scala

import scala.actors.Actor
import scala.actors.Actor._

val fussyActor = actor {
 loop {
 receive {
 case s: String => println("I got a String: " + s)
 case i: Int => println("I got an Int: " + i.toString)
 case _ => println("I have no idea what I just got.")
 }
 }
}

fussyActor ! "hi there"
fussyActor ! 23
fussyActor ! 3.33

This example prints the following when run:

I got a String: hi there
I got an Int: 23
I have no idea what I just got.

The body of fussyActor is a receive method wrapped in a loop. loop is essentially a
nice shortcut for while(true); it does whatever is inside its block repeatedly. receive
blocks until it gets a message of a type that will satisfy one of its internal pattern match-
ing cases.

Actors in Scala | 195

The final lines of this example demonstrate use of the ! (exclamation point, or bang)
method to send messages to our Actor. If you’ve ever seen Actors in Erlang, you’ll find
this syntax familiar. The Actor is always on the lefthand side of the bang, and the
message being sent to said Actor is always on the right. If you need a mnemonic for this
granule of syntactic sugar, imagine that you’re an irate director shouting commands at
your Actors.

The Mailbox
Every Actor has a mailbox in which messages sent to that Actor are queued. Let’s see
an example where we inspect the size of an Actor’s mailbox:

// code-examples/Concurrency/actor-mailbox-script.scala

import scala.actors.Actor
import scala.actors.Actor._

val countActor = actor {
 loop {
 react {
 case "how many?" => {
 println("I've got " + mailboxSize.toString + " messages in my mailbox.")
 }
 }
 }
}

countActor ! 1
countActor ! 2
countActor ! 3
countActor ! "how many?"
countActor ! "how many?"
countActor ! 4
countActor ! "how many?"

This example produces the following output:

I've got 3 messages in my mailbox.
I've got 3 messages in my mailbox.
I've got 4 messages in my mailbox.

Note that the first and second lines of output are identical. Because our Actor was set
up solely to process messages of the string "how many?", those messages didn’t remain
in its mailbox. Only the messages of types we didn’t know about—in this case, Int—
remained unprocessed.

If you see an Actor’s mailbox size ballooning unexpectedly, you’re
probably sending messages of a type that the Actor doesn’t know about.
Include a catchall case (_) when pattern matching messages to find out
what’s harassing your Actors.

196 | Chapter 9: Robust, Scalable Concurrency with Actors

Actors in Depth
Now that we’ve got a basic sense of what Actors are and how they’re used in Scala, let’s
put them to work. Specifically, let’s put them to work cutting hair. The sleeping barber
problem (see [SleepingBarberProblem]) is one of a popular set of computer science
hypotheticals designed to demonstrate issues of concurrency and synchronization.

The problem is this: a hypothetical barber shop has just one barber with one barber
chair, and three chairs in which customers may wait for a haircut. Without customers
around, the barber sleeps. When a customer arrives, the barber wakes up to cut his
hair. If the barber is busy cutting hair when a customer arrives, the customer sits down
in an available chair. If a chair isn’t available, the customer leaves.

The sleeping barber problem is usually solved with semaphores and mutexes, but we’ve
got better tools at our disposal. Straight away, we see several things to model as Actors:
the barber is clearly one, as are the customers. The barbershop itself could be modeled
as an Actor, too; there need not be a real-world parallel to verbal communication in an
Actor system, even though we’re sending messages.

Let’s start with the sleeping barber’s customers, as they have the simplest
responsibilities:

// code-examples/Concurrency/sleepingbarber/customer.scala

package sleepingbarber

import scala.actors.Actor
import scala.actors.Actor._

case object Haircut

class Customer(val id: Int) extends Actor {
 var shorn = false

 def act() = {
 loop {
 react {
 case Haircut => {
 shorn = true
 println("[c] customer " + id + " got a haircut")
 }
 }
 }
 }
}

For the most part, this should look pretty familiar: we declare the package in which
this code lives, we import code from the scala.actors package, and we define a class
that extends Actor. There are a few details worth noting, however.

First of all, there’s our declaration of case object Haircut. A common pattern when
working with Actors in Scala is to use a case object to represent a message without

Actors in Scala | 197

internal data. If we wanted to include, say, the time at which the haircut was completed,
we’d use a case class instead. We declare Haircut here because it’s a message type that
will be sent solely to customers.

Note as well that we’re storing one bit of mutable state in each Customer: whether or
not they’ve gotten a haircut. In their internal loop, each Customer waits for a Haircut
message and, upon receipt of one, we set the shorn boolean to true. Customer uses the
asynchronous react method to respond to incoming messages. If we needed to return
the result of processing the message, we would use receive, but we don’t, and in the
process we save some memory and thread use under the hood.

Let’s move on to the barber himself. Because there’s only one barber, we could have
used the actor factory method technique mentioned earlier to create him. For testing
purposes, we’ve instead defined our own Barber class:

// code-examples/Concurrency/sleepingbarber/barber.scala

package sleepingbarber

import scala.actors.Actor
import scala.actors.Actor._
import scala.util.Random

class Barber extends Actor {
 private val random = new Random()

 def helpCustomer(customer: Customer) {
 if (self.mailboxSize >= 3) {
 println("[b] not enough seats, turning customer " + customer.id + " away")
 } else {
 println("[b] cutting hair of customer " + customer.id)
 Thread.sleep(100 + random.nextInt(400))
 customer ! Haircut
 }
 }

 def act() {
 loop {
 react {
 case customer: Customer => helpCustomer(customer)
 }
 }
 }
}

The core of the Barber class looks very much like the Customer. We loop around
react, waiting for a particular type of object. To keep that loop tight and readable, we
call a method, helpCustomer, when a new Customer is sent to the barber. Within that
method we employ a check on the mailbox size to serve as our “chairs” that customers
may occupy; we could have the Barber or Shop classes maintain an internal Queue, but
why bother when each Actor’s mailbox already is one?

198 | Chapter 9: Robust, Scalable Concurrency with Actors

If three or more customers are in the queue, we simply ignore that message; it’s then
discarded from the barber’s mailbox. Otherwise, we simulate a semi-random delay
(always at least 100 milliseconds) for the time it takes to cut a customer’s hair, then
send off a Haircut message to that customer. (Were we not trying to simulate a
real-world scenario, we would of course remove the call to Thread.sleep() and allow
our barber to run full tilt.)

Next up, we have a simple class to represent the barbershop itself:

// code-examples/Concurrency/sleepingbarber/shop.scala

package sleepingbarber

import scala.actors.Actor
import scala.actors.Actor._

class Shop extends Actor {
 val barber = new Barber()
 barber.start

 def act() {
 println("[s] the shop is open")

 loop {
 react {
 case customer: Customer => barber ! customer
 }
 }
 }
}

By now, this should all look very familiar. Each Shop creates and starts a new Barber,
prints a message telling the world that the shop is open, and sits in a loop waiting for
customers. When a Customer comes in, he’s sent to the barber. We now see an unex-
pected benefit of Actors: they allow us to describe concurrent business logic in easily
understood terms. “Send the customer to the barber” makes perfect sense, much more
so than “Notify the barber, unlock the mutex around the customer seats, increment
the number of free seats,” and so forth. Actors get us closer to our domain.

Finally, we have a driver for our simulation:

// code-examples/Concurrency/sleepingbarber/barbershop-simulator.scala

package sleepingbarber

import scala.actors.Actor._
import scala.collection.{immutable, mutable}
import scala.util.Random

object BarbershopSimulator {
 private val random = new Random()
 private val customers = new mutable.ArrayBuffer[Customer]()
 private val shop = new Shop()

Actors in Scala | 199

 def generateCustomers {
 for (i <- 1 to 20) {
 val customer = new Customer(i)
 customer.start()
 customers += customer
 }

 println("[!] generated " + customers.size + " customers")
 }

 // customers arrive at random intervals
 def trickleCustomers {
 for (customer <- customers) {
 shop ! customer
 Thread.sleep(random.nextInt(450))
 }
 }

 def tallyCuts {
 // wait for any remaining concurrent actions to complete
 Thread.sleep(2000)

 val shornCount = customers.filter(c => c.shorn).size
 println("[!] " + shornCount + " customers got haircuts today")
 }

 def main(args: Array[String]) {
 println("[!] starting barbershop simulation")
 shop.start()

 generateCustomers
 trickleCustomers
 tallyCuts

 System.exit(0)
 }
}

After “opening the shop,” we generate a number of Customer objects, assigning a nu-
meric ID to each and storing the lot in an ArrayBuffer. Next, we “trickle” the customers
in by sending them as messages to the shop and sleeping for a semi-random amount of
time between loops. At the end of our simulated day, we tally up the number of cus-
tomers who got haircuts by filtering out the customers whose internal shorn boolean
was set to true and asking for the size of the resulting sequence.

Compile and run the code within the sleepingbarber directory as follows:

fsc *.scala
scala -classpath . sleepingbarber.BarbershopSimulator

Throughout our code, we’ve prefixed console messages with abbreviations for the
classes from which the messages were printed. When we look at an example run of our
simulator, it’s easy to see where each message came from:

200 | Chapter 9: Robust, Scalable Concurrency with Actors

[!] starting barbershop simulation
[s] the shop is open
[!] generated 20 customers
[b] cutting hair of customer 1
[b] cutting hair of customer 2
[c] customer 1 got a haircut
[c] customer 2 got a haircut
[b] cutting hair of customer 3
[c] customer 3 got a haircut
[b] cutting hair of customer 4
[b] cutting hair of customer 5
[c] customer 4 got a haircut
[b] cutting hair of customer 6
[c] customer 5 got a haircut
[b] cutting hair of customer 7
[c] customer 6 got a haircut
[b] not enough seats, turning customer 8 away
[b] cutting hair of customer 9
[c] customer 7 got a haircut
[b] not enough seats, turning customer 10 away
[c] customer 9 got a haircut
[b] cutting hair of customer 11
[b] cutting hair of customer 12
[c] customer 11 got a haircut
[b] cutting hair of customer 13
[c] customer 12 got a haircut
[b] cutting hair of customer 14
[c] customer 13 got a haircut
[b] not enough seats, turning customer 15 away
[b] not enough seats, turning customer 16 away
[b] not enough seats, turning customer 17 away
[b] cutting hair of customer 18
[c] customer 14 got a haircut
[b] cutting hair of customer 19
[c] customer 18 got a haircut
[b] cutting hair of customer 20
[c] customer 19 got a haircut
[c] customer 20 got a haircut
[!] 15 customers got haircuts today

You’ll find that each run’s output is, predictably, slightly different. Every time the bar-
ber takes a bit longer to cut hair than it does for several customers to enter, the “chairs”
(the barber’s mailbox queue) fill up, and new customers simply leave.

Of course, we have to include the standard caveats that come with simple examples.
For one, it’s possible that our example may not be suitably random, particularly if
random values are retrieved within a millisecond of one another. This is a byproduct
of the way the JVM generates random numbers, and a good reminder to be careful
about randomness in concurrent programs. You’d also want to replace the sleep inside
tallyCuts with a clearer signal that the various actors in the system are done doing their
work, perhaps by making the BarbershopSimulation an Actor and sending it messages
that indicate completion.

Actors in Scala | 201

Try modifying the code to introduce more customers, additional message types,
different delays, or to remove the randomness altogether. If you’re an experienced
multithreaded programmer, you might try writing your own sleeping barber imple-
mentation just to compare and contrast. We’re willing to bet that an implementation
in Scala with Actors will be terser and easier to maintain.

Effective Actors
To get the most out of Actors, there are few things to remember. First, note that there
are several methods you can use to get different types of behavior out of your Actors.
Table 9-1 should help clarify when to use each method.

Table 9-1. Actor methods

Method Returns Description

act Unit Abstract, top-level method for an Actor. Typically contains one of the
following methods inside it.

receive Result of processing
message

Blocks until a message of matched type is received.

receiveWithin Result of processing
message

Like receive, but unblocks after specified number of milliseconds.

react Nothing Requires less overhead (threads) than receive.

reactWithin Nothing Like react, but unblocks after specified number of milliseconds.

Typically, you’ll want to use react wherever possible. If you need the results of pro-
cessing a message (that is, you need a synchronous response from sending a message
to an Actor), use the receiveWithin variant to reduce your chances of blocking indefi-
nitely on an Actor that’s gotten wedged.

Another strategy to keep your Actor-based code asynchronous is the use of futures. A
future is a placeholder object for a value that hasn’t yet been returned from an asyn-
chronous process. You can send a message to an Actor with the !! method; a variant
of this method allows you to pass along a partial function that is applied to the future
value. As you can see from the following example, retrieving a value from a Future is
as straightforward as invoking its apply method. Note that retrieving a value from a
Future is a blocking operation:

// code-examples/Concurrency/future-script.scala
import scala.actors.Futures._

val eventually = future(5 * 42)
println(eventually())

Each Actor in your system should have clear responsibilities. Don’t use Actors for
general-purpose, highly stateful tasks. Instead, think like a director: what are the
distinct roles in the “script” of your application, and what’s the least amount of

202 | Chapter 9: Robust, Scalable Concurrency with Actors

information each Actor needs to do its job? Give each Actor just a couple of responsi-
bilities, and use messages (usually in the form of a case class or case object) to delegate
those responsibilities to other Actors.

Don’t be hesitant to copy data when writing Actor-centric code. The more immutable
your design, the less likely you are to end up with unexpected state. The more you
communicate via messages, the less you have to worry about synchronization. All those
messages and immutable variables might appear to be overly costly. But, with today’s
plentiful hardware, trading memory overhead for clarity and predictability seems more
than fair for most applications.

Lastly, know when Actors aren’t appropriate. Just because Actors are a great way to
handle concurrency in Scala doesn’t mean that they’re the only way, as we’ll see soon.
Traditional threading and locking may better suit write-heavy critical paths for which
a messaging approach would incur too much overhead. In our experience, you can use
a purely Actor-based design to prototype a concurrent solution, then use profiling tools
to suss out parts of your application that might benefit from a different approach.

Traditional Concurrency in Scala: Threading and Events
While Actors are a great way to handle concurrent operations, they’re not the only way
to do so in Scala. As Scala is interoperable with Java, the concurrency concepts that
you may be familiar with on the JVM still apply.

One-Off Threads
For starters, Scala provides a handy way to run a block of code in a new thread:

// code-examples/Concurrency/threads/by-block-script.scala

new Thread { println("this will run in a new thread") }

A similar construct is available in the scala.concurrent package, as a method on the
ops object to run a block asynchronously with spawn:

// code-examples/Concurrency/threads/spawn.scala

import scala.concurrent.ops._

object SpawnExample {
 def main(args: Array[String]) {
 println("this will run synchronously")

 spawn {
 println("this will run asychronously")
 }
 }
}

Traditional Concurrency in Scala: Threading and Events | 203

Using java.util.concurrent
If you’re familiar with the venerable java.util.concurrent package, you’ll find it just
as easy to use from Scala (or hard to use, depending on your point of view). Let’s use
Executors to create a pool of threads. We’ll use the thread pool to run a simple class,
implementing Java’s Runnable interface for thread-friendly classes, that identifies which
thread it’s running on:

// code-examples/Concurrency/threads/util-concurrent-script.scala

import java.util.concurrent._

class ThreadIdentifier extends Runnable {
 def run {
 println("hello from Thread " + currentThread.getId)
 }
}

val pool = Executors.newFixedThreadPool(5)

for (i <- 1 to 10) {
 pool.execute(new ThreadIdentifier)
}

As is standard in Java concurrency, the run method is where a threaded class starts.
Every time our pool executes a new ThreadIdentifier, its run method is invoked. A look
at the output tells us that we’re running on the five threads in the pool, with IDs ranging
from 9 to 13:

hello from Thread 9
hello from Thread 10
hello from Thread 11
hello from Thread 12
hello from Thread 13
hello from Thread 9
hello from Thread 11
hello from Thread 10
hello from Thread 10
hello from Thread 13

This is, of course, just scratching the surface of what is available in
java.util.concurrent. You’ll find that your existing knowledge of Java’s approach to
multithreading still applies in Scala. What’s more, you’ll be able to accomplish the same
tasks using less code, which should contribute to maintainability and productivity.

Events
Threading and Actors aren’t the only way to do concurrency. Event-based concurrency,
a particular approach to asynchronous or non-blocking I/O (NIO), has become a fa-
vored way to write servers that need to scale to thousands of simultaneous clients.
Eschewing the traditional one-to-one relationship of threads to clients, this model of

204 | Chapter 9: Robust, Scalable Concurrency with Actors

concurrency exposes events that occur when particular conditions are met (for
example, when data is received from a client over a network socket). Typically, the
programmer will associate a callback method with each event that’s relevant to her
program.

While the java.nio package provides a variety of useful primitives for non-blocking
I/O (buffers, channels, etc.), it’s still a fair bit of work to cobble together an event-based
concurrent program from those simple parts. Enter Apache MINA, built atop Java NIO
and described on its home page as “a network application framework which helps users
develop high performance and high scalability network applications easily” (see
[MINA]).

While MINA may be easier to use than Java’s built-in NIO libraries, we’ve gotten used
to some conveniences of Scala that just aren’t available in MINA. The open source
Naggati library (see [Naggati]) adds a Scala-friendly layer atop MINA that, according
to its author, “makes it easy to build protocol filters [using a] sequential style.” Essen-
tially, Naggati is a DSL for parsing network protocols, with MINA’s powerful NIO
abilities under the hood.

Let’s use Naggati to write the foundations of an SMTP email server. To keep things
simple, we’re only dealing with two SMTP commands: HELO and QUIT. The former
command identifies a client, and the latter ends the client’s session.

We’ll keep ourselves honest with a test suite, facilitated by the Specs Behavior-Driven
Development library (see “Specs” on page 363):

// .../smtpd/src/test/scala/com/programmingscala/smtpd/SmtpDecoderSpec.scala

package com.programmingscala.smtpd

import java.nio.ByteOrder
import net.lag.naggati._
import org.apache.mina.core.buffer.IoBuffer
import org.apache.mina.core.filterchain.IoFilter
import org.apache.mina.core.session.{DummySession, IoSession}
import org.apache.mina.filter.codec._
import org.specs._
import scala.collection.{immutable, mutable}

object SmtpDecoderSpec extends Specification {
 private var fakeSession: IoSession = null
 private var fakeDecoderOutput: ProtocolDecoderOutput = null
 private var written = new mutable.ListBuffer[Request]

 def quickDecode(s: String): Unit = {
 Codec.decoder.decode(fakeSession, IoBuffer.wrap(s.getBytes), fakeDecoderOutput)
 }

 "SmtpRequestDecoder" should {
 doBefore {
 written.clear()
 fakeSession = new DummySession

Traditional Concurrency in Scala: Threading and Events | 205

 fakeDecoderOutput = new ProtocolDecoderOutput {
 override def flush(nextFilter: IoFilter.NextFilter, s: IoSession) = {}
 override def write(obj: AnyRef) = written += obj.asInstanceOf[Request]
 }
 }

 "parse HELO" in {
 quickDecode("HELO client.example.org\n")
 written.size mustEqual 1
 written(0).command mustEqual "HELO"
 written(0).data mustEqual "client.example.org"
 }

 "parse QUIT" in {
 quickDecode("QUIT\n")
 written.size mustEqual 1
 written(0).command mustEqual "QUIT"
 written(0).data mustEqual null
 }
 }
}

After setting up an environment for each test run, our suite exercises the two SMTP
commands we’re interested in. The doBefore block runs before each test, guaranteeing
that mock session and output buffers are in a clean state. In each test we’re passing a
string of hypothetical client input to our as-yet-unimplemented Codec, then verifying
that the resulting Request (a case class) contains the correct command and data fields.
As the QUIT command doesn’t require any additional information from the client, we
simply check that data is null.

With our tests in place, let’s implement a basic codec (an encoder and decoder) for
SMTP:

// .../smtpd/src/main/scala/com/programmingscala/smtpd/Codec.scala

package com.programmingscala.smtpd

import org.apache.mina.core.buffer.IoBuffer
import org.apache.mina.core.session.{IdleStatus, IoSession}
import org.apache.mina.filter.codec._
import net.lag.naggati._
import net.lag.naggati.Steps._

case class Request(command: String, data: String)
case class Response(data: IoBuffer)

object Codec {
 val encoder = new ProtocolEncoder {
 def encode(session: IoSession, message: AnyRef, out: ProtocolEncoderOutput) = {
 val buffer = message.asInstanceOf[Response].data
 out.write(buffer)
 }

 def dispose(session: IoSession): Unit = {

206 | Chapter 9: Robust, Scalable Concurrency with Actors

 // no-op, required by ProtocolEncoder trait
 }
 }

 val decoder = new Decoder(readLine(true, "ISO-8859-1") { line =>
 line.split(' ').first match {
 case "HELO" => state.out.write(Request("HELO", line.split(' ')(1))); End
 case "QUIT" => state.out.write(Request("QUIT", null)); End
 case _ => throw new ProtocolError("Malformed request line: " + line)
 }
 })
}

We first define a Request case class in which to store request data as it arrives. Then
we specify the encoder portion of our codec, which exists simply to write data out. A
dispose method is defined (but not fleshed out) to fulfill the contract of the
ProtocolEncoder trait.

The decoder is what we’re really interested in. readRequest reads a line, picks out the
first word in that line, and pattern matches on it to find SMTP commands. In the case
of a HELO command, we also grab the subsequent string on that line. The results are
placed in a Request object and written out to state. As you might imagine, state stores
our progress throughout the parsing process.

Though trivial, the above example demonstrates just how easy it is to parse protocols
with Naggati. Now that we’ve got a working codec, let’s combine Naggati and MINA
with Actors to wire up a server.

First, a few lines of setup grunt work to get things going for our SMTP server:

// .../smtpd/src/main/scala/com/programmingscala/smtpd/Main.scala

package com.programmingscala.smtpd

import net.lag.naggati.IoHandlerActorAdapter
import org.apache.mina.filter.codec.ProtocolCodecFilter
import org.apache.mina.transport.socket.SocketAcceptor
import org.apache.mina.transport.socket.nio.{NioProcessor, NioSocketAcceptor}
import java.net.InetSocketAddress
import java.util.concurrent.{Executors, ExecutorService}
import scala.actors.Actor._

object Main {
 val listenAddress = "0.0.0.0"
 val listenPort = 2525

 def setMaxThreads = {
 val maxThreads = (Runtime.getRuntime.availableProcessors * 2)
 System.setProperty("actors.maxPoolSize", maxThreads.toString)
 }

 def initializeAcceptor = {
 var acceptorExecutor = Executors.newCachedThreadPool()
 var acceptor =

Traditional Concurrency in Scala: Threading and Events | 207

 new NioSocketAcceptor(acceptorExecutor, new NioProcessor(acceptorExecutor))
 acceptor.setBacklog(1000)
 acceptor.setReuseAddress(true)
 acceptor.getSessionConfig.setTcpNoDelay(true)
 acceptor.getFilterChain.addLast("codec",
 new ProtocolCodecFilter(smtpd.Codec.encoder, smtpd.Codec.decoder))
 acceptor.setHandler(
 new IoHandlerActorAdapter(session => new SmtpHandler(session)))
 acceptor.bind(new InetSocketAddress(listenAddress, listenPort))
 }

 def main(args: Array[String]) {
 setMaxThreads
 initializeAcceptor
 println("smtpd: up and listening on " + listenAddress + ":" + listenPort)
 }
}

To ensure that we’re getting the most out of the Actor instances in our server, we set
the actors.maxPoolSize system property to twice the number of available processors
on our machine. We then initialize an NioSocketAcceptor, a key piece of MINA ma-
chinery that accepts new connections from clients. The final three lines of this config-
uration are critical, as they put our codec to work, tell the acceptor to handle requests
with a special object, and start the server listening for new connections on port 2525
(real SMTP servers run on the privileged port 25).

The aforementioned special object is an Actor wrapped in an IoHandlerActorAdapter,
a bridging layer between Scala Actors and MINA that’s provided by Naggati. This is
the piece of our server that talks back to the client. Now that we know what the client
is saying, thanks to the decoder, we actually know what to say back!

// .../smtpd/src/main/scala/com/programmingscala/smtpd/SmtpHandler.scala

package com.programmingscala.smtpd

import net.lag.naggati.{IoHandlerActorAdapter, MinaMessage, ProtocolError}
import org.apache.mina.core.buffer.IoBuffer
import org.apache.mina.core.session.{IdleStatus, IoSession}
import java.io.IOException
import scala.actors.Actor
import scala.actors.Actor._
import scala.collection.{immutable, mutable}

class SmtpHandler(val session: IoSession) extends Actor {
 start

 def act = {
 loop {
 react {
 case MinaMessage.MessageReceived(msg) =>
 handle(msg.asInstanceOf[smtpd.Request])
 case MinaMessage.SessionClosed => exit()
 case MinaMessage.SessionIdle(status) => session.close
 case MinaMessage.SessionOpened => reply("220 localhost Tapir SMTPd 0.1\n")

208 | Chapter 9: Robust, Scalable Concurrency with Actors

 case MinaMessage.ExceptionCaught(cause) => {
 cause.getCause match {
 case e: ProtocolError => reply("502 Error: " + e.getMessage + "\n")
 case i: IOException => reply("502 Error: " + i.getMessage + "\n")
 case _ => reply("502 Error unknown\n")
 }
 session.close
 }
 }
 }
 }

 private def handle(request: smtpd.Request) = {
 request.command match {
 case "HELO" => reply("250 Hi there " + request.data + "\n")
 case "QUIT" => reply("221 Peace out girl scout\n"); session.close
 }
 }

 private def reply(s: String) = {
 session.write(new smtpd.Response(IoBuffer.wrap(s.getBytes)))
 }

}

Straight away, we see the same pattern that we saw in the Actors examples earlier in
this chapter: looping around a react block that pattern matches on a limited set of
cases. In SmtpHandler, all of those cases are events provided by MINA. For example,
MINA will send us MinaMessage.SessionOpened when a client connects and
MinaMessage.SessionClosed when a client disconnects.

The case we’re most interested in is MinaMessage.MessageReceived. We’re handed a
familiar Request object with each newly received valid message, and we can pattern
match on the command field to take appropriate action. When the client says HELO, we
can reply with an acknowledgement. When the client says QUIT, we say goodbye and
disconnect him.

Now that we’ve got all the pieces in place, let’s have a conversation with our server:

[al3x@jaya ~]$ telnet localhost 2525
Trying ::1...
Connected to localhost.
Escape character is '^]'.
220 localhost Tapir SMTPd 0.1
HELO jaya.local
250 Hi there jaya.local
QUIT
221 Peace out girl scout
Connection closed by foreign host.

Traditional Concurrency in Scala: Threading and Events | 209

A brief conversation, to be sure, but our server works! Now, what happens if we throw
something unexpected at it?

[al3x@jaya ~]$ telnet localhost 2525
Trying ::1...
Connected to localhost.
Escape character is '^]'.
220 localhost Tapir SMTPd 0.1
HELO jaya.local
250 Hi there jaya.local
BAD COMMAND
502 Error: Malformed request line: BAD COMMAND
Connection closed by foreign host.

Nicely handled. Good thing we took the time to dig out those exceptions when we
received a MinaMessage.ExceptionCaught in our SmtpHandler Actor.

Of course, what we’ve built just handles the beginning and end of a complete SMTP
conversation. As an exercise, try filling out the rest of the commands. Or, to skip ahead
to something very much akin to what we’ve built here, check out the open source
Mailslot project on GitHub (see [Mailslot]).

Recap and What’s Next
We learned how to build scalable, robust concurrent applications using Scala’s Actor
library that avoid the problems of traditional approaches based on synchronized access
to shared, mutable state. We also demonstrated that Java’s powerful built-in threading
model is easily accessible from Scala. Finally, we learned how to combine Actors with
the powerful MINA NIO framework and Naggati to develop event-driven, asynchro-
nous network servers from the ground up in just a few lines of code.

The next chapter examines Scala’s built-in support for working with XML.

210 | Chapter 9: Robust, Scalable Concurrency with Actors

CHAPTER 10

Herding XML in Scala

XML has long since become the lingua franca of machine-to-machine communication
on the Internet. The format’s combination of human readability, standardization, and
tool support has made working with XML an inevitability for programmers. Yet, writ-
ing code that deals in XML is an unpleasant chore in most programming languages.
Scala improves this situation.

As with the Actor functionality we learned about in Chapter 9, Scala’s XML support is
implemented partly as a library, with some built-in syntax support. It feels to the pro-
grammer like an entirely natural part of the language. Convenient operators add a
spoonful of syntactic sugar to the task of diving deep into complex document struc-
tures, and pattern matching further sweetens the deal. Outputting XML is just as
pleasant.

Unusual in programming languages and particularly handy, Scala allows inline XML.
Most anywhere you might put a string, you can put XML. This feature makes tem-
plating and configuration a breeze, and lets us test our use of XML without so much
as opening a file.

Let’s explore working with XML in Scala. First, we’ll look at reading and navigating an
XML document. Finally, we’ll produce XML output programmatically and demon-
strate uses for inline XML.

Reading XML
We’ll start with the basics: how to turn a string full of XML into a data structure we
can work with:

// code-examples/XML/reading/from-string-script.scala

import scala.xml._

val someXMLInAString = """
<sammich>
 <bread>wheat</bread>

211

 <meat>salami</meat>
 <condiments>
 <condiment expired="true">mayo</condiment>
 <condiment expired="false">mustard</condiment>
 </condiments>
</sammich>
"""

val someXML = XML.loadString(someXMLInAString)
assert(someXML.isInstanceOf[scala.xml.Elem])

All fine and well. We’ve transformed the string into a NodeSeq, Scala’s type for storing
a sequence of XML nodes. Were our XML document in a file on disk, we could have
used the loadFile method from the same package.

Since we’re supplying the XML ourselves, we can skip the XML.loadString step and just
assign a chunk of markup to a val or var:

// code-examples/XML/reading/inline-script.scala

import scala.xml._

val someXML =
<sammich>
 <bread>wheat</bread>
 <meat>salami</meat>
 <condiments>
 <condiment expired="true">mayo</condiment>
 <condiment expired="false">mustard</condiment>
 </condiments>
</sammich>

assert(someXML.isInstanceOf[scala.xml.Elem])

Exploring XML
If we paste the previous example into the interpreter, we can explore our sandwich
using some handy tools provided by NodeSeq:

scala> someXML \ "bread"
res2: scala.xml.NodeSeq = <bread>wheat</bread>

That backslash—what the documentation calls a projection function—says, “Find me
elements named bread.” We’ll always get a NodeSeq back when using a projection func-
tion. If we’re only interested in what’s between the tags, we can use the text method:

scala> (someXML \ "bread").text
res3: String = wheat

It’s valid syntax to say someXML \ "bread" text, without parentheses or
the dot before the call to text. You’ll still get the same result, but it’s
harder to read. Parentheses make your intent clear.

212 | Chapter 10: Herding XML in Scala

We’ve only inspected the outermost layer of our sandwich. Let’s try to get a NodeSeq of
the condiments:

scala> someXML \ "condiment"
res4: scala.xml.NodeSeq =

What went wrong? The \ function doesn’t descend into child elements of an XML
structure. To do that, we use its sister function, \\ (two backslashes):

scala> someXML \\ "condiment"
res5: scala.xml.NodeSeq = <condiment expired="true">mayo</condiment>
 <condiment expired="false">mustard</condiment>

Much better. (We split the single output line into two lines so it would fit on the page.)
We dove into the structure and pulled out the two <condiment> elements. Looks like
one of the condiments has gone bad, though. We can find out if any of the condiments
has expired by extracting its expired attribute. All it takes is an @ before the attribute
name:

scala> (someXML \\ "condiment")(0) \ "@expired"
res6: scala.xml.NodeSeq = true

We used the (0) to pick the first of the two condiments that were returned by (someXML
\\ "condiment").

Looping and Matching XML
The previous bit of code extracted the value of the expired attribute (true, in this case),
but it didn’t tell us which condiment is expired. If we were handed an arbitrary XML
sandwich, how would we identify the expired condiments? We can loop through the
XML:

// code-examples/XML/reading/for-loop-script.scala

for (condiment <- (someXML \\ "condiment")) {
 if ((condiment \ "@expired").text == "true")
 println("the " + condiment.text + " has expired!")
}

Because NodeSeq inherits the same familiar attributes that most Scala collection types
carry, tools like for loops apply directly. In the example just shown, we extract the
<condiment> nodes, loop over each of them, and test whether or not their expired at-
tribute equals the string "true". We have to specify that we want the text of a given
condiment; otherwise, we’d get a string representation of the entire line of XML.

We can also use pattern matching on XML structures. Cases in pattern matches can be
written in terms of XML literals; expressions between curly braces ({}) escape back to
standard Scala pattern matching syntax. To match all XML nodes in the escaped por-
tion of a pattern match, use an underscore (wildcard) followed by an asterisk (_*). To
bind what you’ve matched on to a variable, prefix the match with the variable name
and an @ sign.

Reading XML | 213

Let’s put all that together into one example. We’ll include the original XML document
again so you can follow along as we pattern match on XML:

// code-examples/XML/reading/pattern-matching-script.scala

import scala.xml._

val someXML =
<sammich>
 <bread>wheat</bread>
 <meat>salami</meat>
 <condiments>
 <condiment expired="true">mayo</condiment>
 <condiment expired="false">mustard</condiment>
 </condiments>
</sammich>

someXML match {
 case <sammich>{ingredients @ _*}</sammich> => {
 for (cond @ <condiments>{_*}</condiments> <- ingredients)
 println("condiments: " + cond.text)
 }
}

Here, we bind the contents of our <sammich> structure (that is, what’s inside the opening
and closing tag) to a variable called ingredients. Then, as we iterate through the in-
gredients in a for loop, we assign the elements that are between the <condiments> tags
to a temporary variable, cond. Each cond is printed.

The same tools that let us easily manipulate complex data structures in Scala are readily
available for XML processing. As a readable alternative to XSLT, Scala’s XML library
makes reading and parsing XML a breeze. It also gives us equally powerful tools for
writing XML, which we’ll explore in the next section.

Writing XML
While some languages construct XML through complex object serialization mecha-
nisms, Scala’s support for XML literals makes writing XML far simpler. Essentially,
when you want XML, just write XML. To interpolate variables and expressions, escape
out to Scala with curly braces, as we did in the pattern matching examples earlier:

scala> var name = "Bob"
name: java.lang.String = Bob

scala> val bobXML =
 | <person>
 | <name>{name}</name>
 | </person>
bobXML: scala.xml.Elem =
<person>
 <name>Bob</name>
</person>

214 | Chapter 10: Herding XML in Scala

As we can see, the name variable was substituted when we constructed the XML docu-
ment assigned to bobXML. That evaluation only occurs once; were name subsequently
redefined, the <name> element of bobXML would still contain the string “Bob”.

A Real-World Example
For a more complete example, let’s say we’re designing that favorite latter-day “hello
world,” a blogging system. We’ll start with a class to represent an Atom-friendly blog
post:

// code-examples/XML/writing/post.scala

import java.text.SimpleDateFormat
import java.util.Date

class Post(val title: String, val body: String, val updated: Date) {
 lazy val dashedDate = {
 val dashed = new SimpleDateFormat("yy-MM-dd")
 dashed.format(updated)
 }

 lazy val atomDate = {
 val rfc3339 = new SimpleDateFormat("yyyy-MM-dd'T'h:m:ss'-05:00'")
 rfc3339.format(updated)
 }

 lazy val slug = title.toLowerCase.replaceAll("\\W", "-")
 lazy val atomId = "tag:example.com," + dashedDate + ":/" + slug
}

Beyond the obvious title and body attributes, we’ve defined several lazily loaded values
in our Post class. These attributes will come in handy when we transmute our posts
into an Atom feed, the standard way to syndicate blogs between computers on the Web.
Atom documents are a flavor of XML, and a perfect application for demonstrating the
process of outputting XML with Scala.

We’ll define an AtomFeed class that takes a sequence of Post objects as its sole argument:

// code-examples/XML/writing/atom-feed.scala

import scala.xml.XML

class AtomFeed(posts: Seq[Post]) {
 val feed =
 <feed xmlns="">
 <title>My Blog</title>
 <subtitle>A fancy subtitle.</subtitle>
 <link href=""/>
 <link href="" rel="self"/>
 <updated>{posts(0).atomDate}</updated>
 <author>
 <name>John Doe</name>
 <uri></uri>

Writing XML | 215

 </author>
 <id></id>
 {for (post <- posts) yield
 <entry>
 <title>{post.title}</title>
 <link href={"" + post.slug + ".html"} rel="alternate"/>
 <id>{post.atomId}</id>
 <updated>{post.atomDate}</updated>
 <content type="html">{post.body}</content>
 <author>
 <name>John Doe</name>
 <uri></uri>
 </author>
 </entry>
 }
 </feed>

 def write = XML.saveFull("/tmp/atom-example.xml", feed, "UTF-8", true, null)
}

We’re making heavy use of the ability to escape out to Scala expressions in this example.
Whenever we need a piece of dynamic information—for example, the date of the first
post in the sequence, formatted for the Atom standard—we simply escape out and
write Scala as we normally would. In the latter half of the <feed> element, we use a
for comprehension to yield successive blocks of dynamically formatted XML.

The write method of AtomFeed demonstrates the use of the saveFull method, provided
by the scala.xml library. saveFull writes an XML document to disk, optionally in dif-
ferent encoding schemes and with different document type declarations. Alternately,
the save method within the same package will make use of any java.io.Writer variant,
should you need buffering, piping, etc.

Writing XML with Scala is straightforward: construct the document you need with
inline XML, use interpolation where dynamic content is to be substituted, and make
use of the handy convenience methods to write your completed documents to disk or
to other output streams.

Recap and What’s Next
XML has become ubiquitous in software applications, yet few languages make working
with XML a simple task. We learned how Scala accelerates XML development by mak-
ing it easy to read and write XML.

In the next chapter, we’ll learn how Scala provides rich support for creating your own
Domain-Specific Languages (DSLs).

216 | Chapter 10: Herding XML in Scala

CHAPTER 11

Domain-Specific Languages in Scala

A Domain-Specific Language is a programming language that mimics the terms, idioms,
and expressions used among experts in the targeted domain. Code written in a DSL
reads like structured prose for the domain. Ideally, a domain expert with little experi-
ence in programming can read, understand, and validate this code. Sometimes, a do-
main expert might be able to write DSL code, even if he isn’t a professional programmer.

DSLs are a large topic. We’ll only touch the surface of DSLs and Scala’s impressive
support for them. For more information on DSLs in general, see [Fowler2009],
[Ford2009], and [Deursen]. The basic build tool we used for the book’s examples,
sake, uses a DSL similar to the venerable make and its Ruby cousin rake. (See the
README in the code download archive for details.) For other examples of Scala “in-
ternal” and “external” DSLs, see [Ghosh2008a] and [Ghosh2008b]. For some advanced
work on DSLs using Scala, [Hofer2008] explores polymorphic substitution of alterna-
tive implementations for DSL abstractions, which is useful for analysis, optimization,
composition, etc.

Well-crafted DSLs offer several benefits:

Encapsulation
A DSL hides implementation details and exposes only those abstractions relevant
to the domain.

Efficiency
Because implementation details are encapsulated, a DSL optimizes the effort re-
quired to write or modify code for application features.

Communication
A DSL helps developers understand the domain and domain experts to verify that
the implementation meets the requirements.

Quality
A DSL minimizes the “impedance mismatch” between feature requirements, as
expressed by domain experts, and the implementing source code, thereby mini-
mizing potential bugs.

217

http://examples.oreilly.com/9780596155964/

However, DSLs also have several drawbacks:

Difficulties of creating good DSLs
Good DSLs are harder to design than traditional APIs. The latter tend to follow
language idioms for API design, where uniformity is important. Even then, elegant,
effective, and easy-to-use APIs are difficult to design. In contrast, each DSL should
reflect the unique language idioms of its domain. The DSL designer has much
greater latitude, which also means it is much harder to determine the “best” design
choices.

Long-term maintenance
DSLs can require more maintenance over the long term to factor in domain
changes. Also, new developers will require more time to learn how to use and
maintain a DSL.

However, when a DSL is appropriate for an application—e.g., when it would be used
frequently to implement and change functionality—a well-designed DSL can be a pow-
erful tool for building flexible and robust applications.

From the implementation point of view, DSLs are often classified as internal and
external.

An internal (sometimes called embedded) DSL is an idiomatic way of writing code in a
general-purpose programming language, like Scala. No special-purpose parser is nec-
essary for internal DSLs. Instead, they are parsed just like any other code written in the
language. In contrast, an external DSL is a custom language with its own custom gram-
mar and parser.

Internal DSLs are easier to create because they don’t require a special-purpose parser.
On the other hand, the constraints of the underlying language limit the options for
expressing domain concepts. External DSLs remove this constraint. You can design the
language any way you want, as long as you can write a reliable parser for it. The down-
side of external DSLs is the requirement to write and use a custom parser.

DSLs have been around a long time. For example, internal DSLs written in Lisp are as
old as Lisp itself. Interest in DSLs has surged recently, driven in part by the Ruby com-
munity, because they are very easy to implement in Ruby. As we’ll see, Scala provides
excellent support for the creation of internal and external DSLs.

Internal DSLs
Let’s create an internal DSL for a payroll application that computes an employee’s
paycheck every pay period, which will be two weeks long. The paycheck will include
the employee’s net salary, which is the gross salary minus the deductions for taxes,
insurance premiums (at least in some countries), retirement fund contributions, etc.

218 | Chapter 11: Domain-Specific Languages in Scala

To better understand the contrasts between code that makes use of DSLs and code that
does not, let’s try both techniques on the same problem. Here’s how the paycheck
might be calculated for two employees, without the help of a DSL:

// code-examples/DSLs/payroll/api/payroll-api-script.scala

import payroll.api._
import payroll.api.DeductionsCalculator._
import payroll._
import payroll.Type2Money._

val buck = Employee(Name("Buck", "Trends"), Money(80000))
val jane = Employee(Name("Jane", "Doe"), Money(90000))

List(buck, jane).foreach { employee =>
 // Assume annual is based on 52 weeks.
 val biweeklyGross = employee.annualGrossSalary / 26.

 val deductions = federalIncomeTax(employee, biweeklyGross) +
 stateIncomeTax(employee, biweeklyGross) +
 insurancePremiums(employee, biweeklyGross) +
 retirementFundContributions(employee, biweeklyGross)

 val check = Paycheck(biweeklyGross, biweeklyGross - deductions, deductions)

 format("%s %s: %s\n", employee.name.first, employee.name.last, check)
}

For each employee, the script calculates the gross pay for the pay period, the deductions,
and the resulting net. These values are placed into a Paycheck, which is printed out.
Before we describe the types we are using, notice a few things about the foreach loop
that does the work.

First, it is noisy. For example, it mentions employee and biweeklyGross incessantly. A
DSL will help us minimize that “noise” and focus on what’s really going on.

Second, notice that the code is imperative. It says “divide this, add that,” and so forth.
We’ll see that our DSLs look similar, but they are more declarative, hiding the work
from the user.

Here is the simple Paycheck class used in the script:

// code-examples/DSLs/payroll/paycheck.scala

package payroll

/** We're ignoring invalid (?) cases like a negative net
 * when deductions exceed the gross.
 */
case class Paycheck(gross: Money, net: Money, deductions: Money) {

 def plusGross (m: Money) = Paycheck(gross + m, net + m, deductions)
 def plusDeductions (m: Money) = Paycheck(gross, net - m, deductions + m)
}

Internal DSLs | 219

The Employee type uses a Name type:

// code-examples/DSLs/payroll/employee.scala

package payroll

case class Name(first: String, last: String)

case class Employee(name: Name, annualGrossSalary: Money)

The Money type handles arithmetic, rounding to four decimal places, etc. It ignores
currency, except for the toString method. Proper financial arithmetic is notoriously
difficult to do correctly for real-world transactions. This implementation is not perfectly
accurate, but it’s close enough for our purposes. [MoneyInJava] provides useful infor-
mation on doing real money calculations:

// code-examples/DSLs/payroll/money.scala

package payroll
import java.math.{BigDecimal => JBigDecimal,
 MathContext => JMathContext, RoundingMode => JRoundingMode}

/** Most arithmetic is done using JBigDecimals for tighter control.
 */
class Money(val amount: BigDecimal) {

 def + (m: Money) =
 Money(amount.bigDecimal.add(m.amount.bigDecimal))
 def - (m: Money) =
 Money(amount.bigDecimal.subtract(m.amount.bigDecimal))
 def * (m: Money) =
 Money(amount.bigDecimal.multiply(m.amount.bigDecimal))
 def / (m: Money) =
 Money(amount.bigDecimal.divide(m.amount.bigDecimal,
 Money.scale, Money.jroundingMode))

 def < (m: Money) = amount < m.amount
 def <= (m: Money) = amount <= m.amount
 def > (m: Money) = amount > m.amount
 def >= (m: Money) = amount >= m.amount

 override def equals (o: Any) = o match {
 case m: Money => amount equals m.amount
 case _ => false
 }

 override def hashCode = amount.hashCode * 31

 // Hack: Must explicitly call the correct conversion: double2Double
 override def toString =
 String.format("$%.2f", double2Double(amount.doubleValue))
}

object Money {
 def apply(amount: BigDecimal) = new Money(amount)

220 | Chapter 11: Domain-Specific Languages in Scala

 def apply(amount: JBigDecimal) = new Money(scaled(new BigDecimal(amount)))
 def apply(amount: Double) = new Money(scaled(BigDecimal(amount)))
 def apply(amount: Long) = new Money(scaled(BigDecimal(amount)))
 def apply(amount: Int) = new Money(scaled(BigDecimal(amount)))

 def unapply(m: Money) = Some(m.amount)

 protected def scaled(d: BigDecimal) = d.setScale(scale, roundingMode)

 val scale = 4
 val jroundingMode = JRoundingMode.HALF_UP
 val roundingMode = BigDecimal.RoundingMode.ROUND_HALF_UP
 val context = new JMathContext(scale, jroundingMode)
}

object Type2Money {
 implicit def bigDecimal2Money(b: BigDecimal) = Money(b)
 implicit def jBigDecimal2Money(b: JBigDecimal) = Money(b)
 implicit def double2Money(d: Double) = Money(d)
 implicit def long2Money(l: Long) = Money(l)
 implicit def int2Money(i: Int) = Money(i)
}

Note that we use scala.BigDecimal, which wraps java.math.BigDecimal, as the storage
type for financial figures.

Deductions are calculated using four helper methods in payroll.api.Deduction
sCalculator:

// code-examples/DSLs/payroll/api/deductions-calc.scala

package payroll.api
import payroll.Type2Money._

object DeductionsCalculator {
 def federalIncomeTax(empl: Employee, gross: Money) = gross * .25

 def stateIncomeTax(empl: Employee, gross: Money) = gross * .05

 def insurancePremiums(empl: Employee, gross: Money) = Money(500)

 def retirementFundContributions(empl: Employee, gross: Money) = gross * .10
}

Each method might use the employee information and the gross salary for the pay
period. In this case, we use very simple algorithms based on just the gross salary, except
for insurance premiums, which we treat as a fixed value.

Running the script for the payroll API produces the following output:

(665) $ scala -cp ... payroll-api-script.scala
Buck Trends: Paycheck($3076.92,$1346.15,$1730.77)
Jane Doe: Paycheck($3461.54,$1576.92,$1884.62)

Internal DSLs | 221

A Payroll Internal DSL
The previous code works well enough, but suppose we wanted to show it to the Ac-
counting Department to confirm that we’re calculating paychecks correctly. Most
likely, they would get lost in the Scala idioms. Suppose further that we need the ability
to customize this algorithm frequently—for example, because it needs to be customized
for different employee types (salaried, hourly, etc.), or to modify the deduction calcu-
lations. Ideally, we would like to enable the accountants to do these customizations
themselves, without our help.

We might achieve these goals if we can express the logic in a DSL that is sufficiently
intuitive to an accountant. Can we morph our API example into such a DSL?

Returning to the script for the payroll API, what if we hide most of the explicit references
to context information, like the employee, gross salary, and deduction values? Consider
the following text:

Rules to calculate an employee's paycheck:
 employee's gross salary for 2 weeks
 minus deductions for
 federalIncomeTax, which is 25% of gross
 stateIncomeTax, which is 5% of gross
 insurancePremiums, which are 500. in gross's currency
 retirementFundContributions are 10% of gross

This reads like normal English, not code. We have included some “bubble” words (see
[Ford2009]) that aid readability but don’t necessarily correspond to anything essential,
such as to, an, is, for, of, and which. We’ll eliminate some of these unnecessary words
and keep others in our Scala DSL.

Compared to the version in the payroll API script, there’s a lot less clutter obscuring
the essentials of the algorithm. This is because we have minimized explicit references
to the contextual information. We only mention employee twice. We mention gross
five times, but hopefully in “intuitive” ways.

There are many possible internal Scala DSLs we could construct that resemble this ad
hoc DSL. Here is one of them, again in a script, which produces the same output as
before:

// code-examples/DSLs/payroll/dsl/payroll-dsl-script.scala

import payroll._
import payroll.dsl._
import payroll.dsl.rules_

val payrollCalculator = rules { employee =>
 employee salary_for 2.weeks minus_deductions_for { gross =>
 federalIncomeTax is (25. percent_of gross)
 stateIncomeTax is (5. percent_of gross)
 insurancePremiums are (500. in gross.currency)
 retirementFundContributions are (10. percent_of gross)
 }

222 | Chapter 11: Domain-Specific Languages in Scala

}

val buck = Employee(Name("Buck", "Trends"), Money(80000))
val jane = Employee(Name("Jane", "Doe"), Money(90000))

List(buck, jane).foreach { employee =>
 val check = payrollCalculator(employee)
 format("%s %s: %s\n", employee.name.first, employee.name.last, check)
}

We’ll go through the implementation step by step, but first, let’s summarize the features
of Scala that allow us to implement this DSL.

Infix Operator Notation
Consider this line in the definition of payrollCalculator:

employee salary_for 2.weeks minus_deductions_for { gross =>

This infix notation is equivalent to the following less-readable form:

employee.salary_for(2.weeks).minus_deductions_for { gross =>

You can see why we wrote 2.weeks earlier, because the result of this expression is passed
to salary_for. Without the period, the infix expression would be parsed as
employee.salary_for(2).weeks.... There is no weeks method on Int, of course. We’ll
revisit this expression in a moment.

Method chaining like this is often implemented where each method returns this so you
can continue calling methods on the same instance. Note that returning this allows
those method calls to occur in any order. If you need to impose a specific ordering, then
return an instance of a different type. For example, if minus_deductions_for must be
called after salary_for, then salary_for should return a new instance.

Because chaining is so easy, we could have created separate methods for salary, for,
minus, and deductions, allowing us to write the following expression:

employee salary for 2.weeks minus deductions for { gross =>

Note that calls to for are preceded by different calls with very different meanings. So,
if the same instance is used throughout, it would have to track the “flow” internally.
Chaining different instances would eliminate this problem. However, since no com-
putations are actually needed between these words, we chose the simpler design where
words are joined together, separated by _.

Implicit Conversions and User-Defined Types
Returning to 2.weeks, since Int doesn’t have a weeks method, we use an implicit con-
version to a Duration instance that wraps an Int specifying an amount:

Internal DSLs | 223

// code-examples/DSLs/payroll/dsl/duration.scala

package payroll.dsl

case class Duration(val amount: Int) {
 /** @return the number of work days in "amount" weeks. */
 def weeks = amount * 5

 /** @return the number of work days in "amount" years. */
 def years = amount * 260
}

The weeks method multiples that amount by 5 to return the corresponding amount of
work days. Hence, we designed the payroll calculator to work with days as the unit of
time. This decision is completely hidden behind the DSL. Should we later add support
for work hours, it would be easy to refactor the design to use hours instead.

Duration is one of the ad hoc types that we designed to encapsulate the implicit context,
to implement helper methods for the DSL, etc. We’ll discuss the implicit conversion
method we need in a moment.

Apply Methods
A number of the implementation objects use apply to invoke behavior. The rules object
encapsulates the process of building the rules for payroll calculation. Its apply method
takes a function literal, Employee => Paycheck.

Payroll Rules DSL Implementation
Now let’s explore the implementation, starting with the rules object and working our
way down:

// code-examples/DSLs/payroll/dsl/payroll.scala

package payroll.dsl
import payroll._

object rules {

 def apply(rules: Employee => Paycheck) = new PayrollBuilderRules(rules)

 implicit def int2Duration(i: Int) = Duration(i)

 implicit def employee2GrossPayBuilder(e: Employee) =
 new GrossPayBuilder(e)

 implicit def grossPayBuilder2DeductionsBuilder(b: GrossPayBuilder)
 = new DeductionsBuilder(b)

 implicit def double2DeductionsBuilderDeductionHelper(d: Double) =
 new DeductionsBuilderDeductionHelper(d)
}

224 | Chapter 11: Domain-Specific Languages in Scala

import rules._
...

The function literal argument for rules.apply is used to construct a PayrollBuilder
Rules that will process the specified rules. It is used at the very beginning of the DSL.

val payrollCalculator = rules { employee => ...

The rules object also defines implicit conversions. The first one is used by the
2.weeks expression. It converts 2 into a Duration instance, which we discussed previ-
ously. The other conversions are used later in the DSL to enable transparent conversion
of Doubles, Employees, etc. into wrapper instances that we will describe shortly.

Note that the rules object is imported so these conversions are visible in the rest of the
current file. It will also need to be imported in files that use the DSL.

The PayrollBuilderRules is our first wrapper instance. It evaluates the function literal
for the whole rule set, wrapped in a try/catch block:

// code-examples/DSLs/payroll/dsl/payroll.scala
...
class PayrollException(message: String, cause: Throwable)
 extends RuntimeException(message, cause)

protected[dsl] class PayrollBuilderRules(rules: Employee => Paycheck) {
 def apply(employee: Employee) = {
 try {
 rules(employee)
 } catch {
 case th: Throwable => new PayrollException(
 "Failed to process payroll for employee: " + employee, th)
 }
 }
}
...

Note that we protect access to PayrollBuilderRules, because we don’t want clients
using it directly. However, we left the exception public for use in catch clauses. (You
can decide whether or not you like wrapping a thrown exception in a “domain-specific”
exception, as shown.)

Note that we have to pass the employee as a “context” instance in the function literal.
We said that it is desirable to make the context as implicit as possible. A common theme
in our implementation classes, like PayrollBuilderRules, is to hold context information
in wrapper instances and to minimize their visibility in the DSL. An alternative ap-
proach would be to store context in singleton objects so other instances can get to them.
This approach raises thread safety issues, unfortunately.

To see what we mean concerning the context, consider the part of our script that uses
the payroll DSL, where the deductions are specified:

... { gross =>
 federalIncomeTax is (25. percent_of gross)

Internal DSLs | 225

 stateIncomeTax is (5. percent_of gross)
 insurancePremiums are (500. in gross.currency)
 retirementFundContributions are (10. percent_of gross)
}

Consider the insurance premiums, for which a flat Money(500) is deducted. Why didn’t
we just write insurancePremiums are 500., instead? It turns out we have to “sneak” the
gross instance into the expression somehow. The name gross implies that it is a
Money representing the employee’s salary for the pay period. Tricksey DSLses!! It is
actually another helper instance, DeductionsBuilder, which holds the whole paycheck,
including the gross pay, and the employee instance. The name gross is used merely
because it reads well in the places where it is used.

This block is calculating the deductions and deducting them from the gross pay to
determine the net pay. The gross instance handles this process. There is no “commu-
nication” between the four lines of the function literal. Furthermore, federalIncome
Tax, insurancePremiums, etc. are objects with no connection to DeductionsBuilder (as
we’ll see shortly). It would be great if they could be members of DeductionsBuilder or
perhaps some other wrapper instance enclosing this scope. Then each line would be a
method call on one or the other wrapper. Unfortunately, this doesn’t work. Hence,
each line must specify the gross instance to maintain continuity. We jump through
various hoops to support the syntax, yet allow gross to be available, as needed.

So, we contrived the convention that “raw” numbers, like the insurance deduction,
have to be qualified by the particular currency used for the gross pay. We’ll see how
the expression 500. in gross.currency works in a moment. It is something of a hack,
but it reads well and it solves our design problem.

Here is a possible alternative design that would have avoided the problem:

... { builder =>
 builder federalIncomeTax (25. percent_of gross)
 builder stateIncomeTax (5. percent_of gross)
 builder insurancePremiums 500.
 builder retirementFundContributions (10. percent_of gross)
}

Now the fact that a builder is being used is more explicit, and federalIncomeTax,
insurancePremiums, etc. are methods on the builder. We opted for a more readable style,
with the penalty of a harder implementation. You’ll sometimes hear the phrase fluent
interface used to refer to DSLs that emphasize readability.

Here is GrossPayBuilder:

// code-examples/DSLs/payroll/dsl/payroll.scala
...
import payroll.Type2Money._

protected[dsl] class GrossPayBuilder(val employee: Employee) {

 var gross: Money = 0

226 | Chapter 11: Domain-Specific Languages in Scala

 def salary_for(days: Int) = {
 gross += dailyGrossSalary(employee.annualGrossSalary) * days
 this
 }

 // Assume 260 working days: 52 weeks (including vacation) * 5 days/week.
 def weeklyGrossSalary(annual: Money) = annual / 52.0
 def dailyGrossSalary(annual: Money) = annual / 260.0
}
...

Recall that rules defines an implicit conversion from Employee to this type. It is invoked
by the expression employee salary_for, so the GrossPayBuilder.salary_for method can
be called. GrossPayBuilder initializes the gross and appends new values to it whenever
salary_for is called, which assumes we’re adding gross pay in increments of days.
Finally, salary_for returns this to support chaining.

Deduction calculation is the most complex part. When minus_deductions_for is used
in the DSL, it triggers the implicit conversion defined in rules from the GrossPay
Builder to a DeductionsBuilder:

// code-examples/DSLs/payroll/dsl/payroll.scala
...
protected[dsl] class DeductionsBuilder(gpb: GrossPayBuilder) {

 val employee = gpb.employee
 var paycheck: Paycheck = new Paycheck(gpb.gross, gpb.gross, 0)

 def currency = this

 def minus_deductions_for(deductionRules: DeductionsBuilder => Unit) = {
 deductionRules(this)
 paycheck
 }

 def addDeductions(amount: Money) = paycheck = paycheck plusDeductions amount

 def addDeductionsPercentageOfGross(percentage: Double) = {
 val amount = paycheck.gross * (percentage/100.)
 addDeductions(amount)
 }
}
...

DeductionsBuilder saves the employee from the passed-in GrossPayBuilder, which it
doesn’t save as a field. It also initializes the paycheck using the calculated gross pay.

Note that the currency method simply returns this. We don’t need to do anything with
the actual currency when this method is invoked. Instead, it is used to support a design
idiom that we’ll discuss shortly.

The minus_deductions_for does the important work. It invokes the function literal with
the individual rules and then returns the completed Paycheck instance, which is ulti-
mately what rules.apply returns.

Internal DSLs | 227

Our remaining two methods are used to calculate individual deductions. They are
called from DeductionsBuilderDeductionHelper, which we show now:

// code-examples/DSLs/payroll/dsl/payroll.scala
...
class DeductionCalculator {
 def is(builder: DeductionsBuilder) = apply(builder)
 def are(builder: DeductionsBuilder) = apply(builder)

 def apply(builder: DeductionsBuilder) = {}
}

object federalIncomeTax extends DeductionCalculator
object stateIncomeTax extends DeductionCalculator
object insurancePremiums extends DeductionCalculator
object retirementFundContributions extends DeductionCalculator

protected[dsl] class DeductionsBuilderDeductionHelper(val factor: Double) {
 def in (builder: DeductionsBuilder) = {
 builder addDeductions Money(factor)
 builder
 }
 def percent_of (builder: DeductionsBuilder) = {
 builder addDeductionsPercentageOfGross factor
 builder
 }
}

Now we see that federalIncomeTax, etc. are singleton objects. Note the “synonym”
methods is and are. We used are for the objects with plural names, like insuran
cePremiums, and is for the singular objects, like federalIncomeTax. In fact, since both
methods delegate to apply, they are effectively bubble words that the user could omit.
That is, the following two DSL lines are equivalent:

federalIncomeTax is (25. percent_of gross)
federalIncomeTax (25. percent_of gross)

The apply method takes DeductionsBuilder and does nothing with it! In fact, by the
time apply is called, the deduction has already been calculated and factored into the
paycheck. By implication, the presence of expressions like federalIncomeTax is are
effectively syntactic sugar (at least as this DSL is currently implemented). They are a
fancy form of comments, but at least they have the virtue of type checking the “kinds”
of deductions that are allowed. Of course, as the implementation evolves, these in-
stances might do real work.

To see why DeductionCalculator.apply is empty, let’s discuss DeductionsBuil
derDeductionHelper. Recall that the rules object has an implicit conversion method to
convert a Double to a DeductionsBuilderDeductionHelper. Once we have a helper in-
stance, we can call either the in method or the percent_of method. Every line in the
deductions function literal exploits this instance.

228 | Chapter 11: Domain-Specific Languages in Scala

For example, (25. percent_of gross) is roughly equivalent to the following steps:

1. Call to rules.double2DeductionsBuilderDeductionHelper(25.) to create a new
DeductionsBuilderDeductionHelper(25.)

2. Call to the helper’s percent_of(gross) method, where gross is a DeductionsBuilder

3. gross.addDeductionsPercentageOfGross(factor)

In other words, we used DeductionsBuilderDeductionHelper to convert an expression
of the form Double method DeductionsBuilder into an expression of the form
DeductionsBuilder method2 Double. DeductionsBuilder accumulates each deduction
into the paycheck we’re building.

The expression 500. in gross.currency works almost identically. Deductions
Builder.currency is effectively another bubble word; it simply returns this, but gives
a readable idiom for the DSL. The in method simply converts the Double to a Money and
passes it to DeductionsBuilder.addDeductions.

So DeductionCalculator.apply does nothing, because all the work is already done by
the time apply is called.

Internal DSLs: Final Thoughts
So which is better, the original API implementation or the DSL implementation? The
DSL implementation is complex. Like any language, testing its robustness can be a
challenge. Users will try many combinations of expressions. They will probably not
understand the compiler error messages that refer to the internals we’ve hidden behind
the DSL.

Designing a quality DSL is difficult. With an API, you can follow the Scala library
conventions for types, method names, etc. However, with a DSL, you’re trying to imi-
tate the language of a new domain. It’s hard to get it right.

It’s worth the effort, though. A well-designed DSL minimizes the translation effort
between requirements and code, thereby improving communications with
stakeholders about requirements. DSLs also facilitate rapid feature change and hide
distracting implementation details. As always, there is a cost/benefit analysis you
should make when deciding whether to use a DSL.

Assuming you’ve made the “go” decision, a common problem in DSL design is the
finishing problem (see [Ford2009]). How do you know when you’ve finished building
up the state of an instance and it’s ready to use?

We solved this problem in two ways. First, we nested the calculation steps in a function
literal. As soon as rules(employee) was invoked, the paycheck was built to completion.
Also, all the steps were evaluated “eagerly.” We didn’t need to put in all the rules, then
run them at the end. Our only ordering requirement was the need to calculate the gross

Internal DSLs | 229

pay first, since the deductions are based on it. We enforced the correct order of invo-
cation using instances of different types.

There are cases in which you can’t evaluate the build steps eagerly. For example, a DSL
that builds up a SQL query string can’t run a query after each step of the build process.
In this case, evaluation has to wait until the query string is completely built.

By contrast, if your DSL steps are stateless, chained method invocation works just fine.
In this case, it doesn’t matter when you stop calling chained methods. If you chain
methods that build up state, you’ll have to add some sort of done method and trust the
users to always use it at the end.

External DSLs with Parser Combinators
When you write a parser for an external DSL, you can use a parser generator tool like
Antlr (see [Antlr]). However, the Scala library includes a powerful parser combinator
library that can be used for parsing most external DSLs that have a context-free gram-
mar. An attractive feature of this library is the way it defines an internal DSL that makes
parser definitions look very similar to familiar grammar notations, like EBNF (Extended
Backus-Naur Form—see [BNF]).

About Parser Combinators
Parser combinators are building blocks for parsers. Parsers that handle specific kinds
of input—floating-point numbers, integers, etc.—can be combined together to form
other parser combinators for larger expressions. A combinator framework makes it easy
to combine parsers to handle sequential and alternative cases, repetition, optional
terms, etc.

We’ll learn more about parsing techniques and terminology as we proceed. A complete
exposition of parsing techniques is beyond our scope, but our example should get you
started. You can find additional examples of parsers written using Scala’s parser com-
binator library in [Spiewak2009b], [Ghosh2008a], and [Odersky2008].

A Payroll External DSL
For our parser combinator example, we’ll reuse the example we just discussed for in-
ternal DSLs. We’ll modify the grammar slightly, since our external DSL does not have
to be valid Scala syntax. Other changes will make parser construction easier. Here’s an
example written in the external DSL:

paycheck for employee "Buck Trends" is salary for 2 weeks minus deductions for {
 federal income tax is 25. percent of gross,
 state income tax is 5. percent of gross,
 insurance premiums are 500. in gross currency,
 retirement fund contributions are 10. percent of gross
}

230 | Chapter 11: Domain-Specific Languages in Scala

Compare this example to the internal DSL we defined in “A Payroll Internal
DSL” on page 222:

... = rules { employee =>
 employee salary_for 2.weeks minus_deductions_for { gross =>
 federalIncomeTax is (25. percent_of gross)
 stateIncomeTax is (5. percent_of gross)
 insurancePremiums are (500. in gross.currency)
 retirementFundContributions are (10. percent_of gross)
 }
}
...

In our new DSL, we insert a specific employee in the script. We wouldn’t expect a user
to copy and paste this script for every employee. A natural extension that we won’t
pursue would allow the user to loop over all salaried employees in a database, for
example.

Some of the differences are “gratuitous”; we could have used the same syntax we used
previously. These changes include removing underscores between words in some ex-
pressions and expanding camel-case words into space-separated words. That is, we
turned some single words into multi-word expressions. We made these changes be-
cause they will be easy to implement using parser combinators, but using the same
multi-word expressions would have added a lot of complexity to the internal DSL’s
implementation.

We no longer need “local variables” like employee and gross. Those words still appear
in the DSL, but our parser will keep track of the corresponding instances internally.

The remaining changes are punctuation. It is still convenient to surround the list of
deductions with curly braces. We now use a comma to separate the individual deduc-
tions, as that will make the parser’s job easier. We can also drop the parentheses we
used earlier.

To see how closely the internal DSL for Scala’s parser combinator library resembles the
context-free grammar, let’s start with the grammar itself, written in a variation of EBNF.
We’ll omit commas to separate sequences, for clarity:

paycheck = empl gross deduct;

empl = "paycheck" "for" "employee" employeeName;

gross = "is" "salary" "for" duration;

deduct = "minus" "deductions" "for" "{" deductItems "}";

employeeName = "\"" name " " name "\"";

name = ...

duration = decimalNumber weeksDays;

weeksDays = "week" | "weeks" | "day" | "days";

External DSLs with Parser Combinators | 231

deductItems = Ɛ | deductItem { "," deductItem };

deductItem = deductKind deductAmount;

deductKind = tax | insurance | retirement;

tax = fedState "income" "tax";

fedState = "federal" | "state";

insurance = "insurance" "premiums";

retirement = "retirement" "fund" "contributions";

deductAmount = percentage | amount;

percentage = toBe doubleNumber "percent" "of" "gross";

amount = toBe doubleNumber "in" "gross" "currency";

toBe = "is" | "are";

decimalNumber = ...

doubleNumber = ...

We can see that most of the terminals (the literal strings paycheck, for, employee, the
characters { and }, etc.) will be bubble words, as defined in the previous section. We’ll
ignore these after parsing. The Ɛ is used to indicate an empty production for deductI
tems, although there will rarely be no deductions!

We didn’t spell out the details for decimal numbers, double numbers, and allowed
letters in the employee names. We simply elided those definitions. We’ll handle the
details later.

Each line in the grammar defines a production rule. The end of the definition is marked
with a semicolon. A nonterminal appears on the lefthand side of the equals sign. The
righthand side consists of terminals (e.g., the literal strings and characters we just men-
tioned) that require no further parsing, other nonterminals (including possibly a
recursive reference to the lefthand side nonterminal), and operators that express rela-
tionships between the items. Notice that the grammar forms have a hierarchical
decomposition, although not a directed acyclic graph, as generally speaking these
grammars can have cycles.

We have a context-free grammar because every production rule has a single nontermi-
nal on the lefthand side of the equals sign, i.e., without any additional context infor-
mation required to specify the production’s applicability and meaning.

Production rules like toBe = "is" | "are" mean the is production (a terminal in this
case) or the are production will match. This is an example of an alternative composition.

232 | Chapter 11: Domain-Specific Languages in Scala

When productions are separated by white space on the righthand side of another pro-
duction, e.g., prod1 prod2, both productions are required to appear sequentially for a
match. (Most EBNF formats actually require a comma to separate these items.) Hence,
these expressions are more like “and” expressions, but sequential composition is so
common that no & operator is used, the analog of | for alternative composition.

The production rule with "{" deductItem { "," deductItem } "}" demonstrates how
to specify optional (zero or more) repetitions. This expression matches a literal { char-
acter, followed by a deductItem (another production), followed by zero or more ex-
pressions consisting of a literal comma , and another deductItem, and finally ending
with a literal } character. Sometimes an asterisk is used to indicate repetition zero or
more times, e.g., prod *. For repetition at least once, prod + is sometimes used.

Finally, if we had optional items in our grammar, we would enclose them in square
brackets, [...]. There are other kinds of composition operators possible (and
supported in the Scala library), a few of which we’ll discuss. See the [ScalaAPI2008]
entry for Parsers for more details.

A Scala Implementation of the External DSL Grammar
Here is the parser written using Scala’s parser combinators. At this point, we won’t do
anything to actually calculate an employee’s paycheck, so we’ll append V1 to the class
name:

// code-examples/DSLs/payroll/pcdsl/payroll-parser-comb-v1.scala

package payroll.pcdsl
import scala.util.parsing.combinator._
import org.specs._
import payroll._
import payroll.Type2Money._

class PayrollParserCombinatorsV1 extends JavaTokenParsers {

 def paycheck = empl ~ gross ~ deduct

 def empl = "paycheck" ~> "for" ~> "employee" ~> employeeName

 def gross = "is" ~> "salary" ~> "for" ~> duration

 def deduct = "minus" ~> "deductions" ~> "for" ~> "{" ~> deductItems <~ "}"

 // stringLiteral provided by JavaTokenParsers
 def employeeName = stringLiteral

 // decimalNumber provided by JavaTokenParsers
 def duration = decimalNumber ~ weeksDays

 def weeksDays = "weeks" | "week" | "days" | "day"

 def deductItems = repsep(deductItem, ",")

External DSLs with Parser Combinators | 233

 def deductItem = deductKind ~> deductAmount

 def deductKind = tax | insurance | retirement

 def tax = fedState <~ "income" <~ "tax"

 def fedState = "federal" | "state"

 def insurance = "insurance" ~> "premiums"

 def retirement = "retirement" ~> "fund" ~> "contributions"

 def deductAmount = percentage | amount

 def percentage = toBe ~> doubleNumber <~ "percent" <~ "of" <~ "gross"

 def amount = toBe ~> doubleNumber <~ "in" <~ "gross" <~ "currency"

 def toBe = "is" | "are"

 // floatingPointNumber provided by JavaTokenParsers
 def doubleNumber = floatingPointNumber
}

The body of PayrollParserCombinatorsV1 looks very similar to the grammar we defined
for the DSL. Each production rule becomes a method. The terminating semicolon is
dropped, but since the production is a method, it would be valid Scala to leave it in.

Where we had whitespace between each production on the righthand side, we now use
a combinator operator, either ∼, ∼>, or <∼. The combinator for sequential composition
is ∼, used when we want to retain for further processing the results produced by both
productions on the left and right sides of the ∼. For example, when processing the
paycheck production, we want to keep all three results from empl, gross, and deduct.
Hence we use two ∼ operators:

def paycheck = empl ~ gross ~ deduct

We use another sequential composition combinator ∼> when we no longer need the
result of the production to the left. For example, when processing the empl production,
we only want to keep the parse result for the last production, employeeName:

def empl = "paycheck" ~> "for" ~> "employee" ~> employeeName

Similarly, we use <∼ when we no longer need the result for the production to the
right. For example, when processing the tax production, we only want to keep the result
of the first production, fedState:

def tax = fedState <~ "income" <~ "tax"

Our heavy use of the <∼ sequential combinator in the various productions related to
deductions indicates that we aren’t keeping track of the source of each deduction, just
the amount of the deduction. A real paycheck application would print this information,
of course. Our aim is for simplicity. As an exercise, consider how PayrollParser

234 | Chapter 11: Domain-Specific Languages in Scala

CombinatorsV1 and the subsequent refinements below would change if we tracked this
information. Would you necessarily keep the parsed strings or track the information
some other way?

The “or” case is expressed with the | method, just as in the grammar:

def weeksDays = "weeks" | "week" | "days" | "day"

The rep method can be used for zero or more repetitions. We actually use a similar
method, repsep, which lets us specify a separator, in our case a comma (,):

def deduct = ... ~> "{" ~> repsep(deductItem, ",") <~ "}"

Note that deduct combines several features we have just described.

Like repetition, there is an opt method for optional terms, which we aren’t using.

PayrollParserCombinatorsV1 inherits from JavaTokenParsers, which inherits from
RegexParsers, which inherits from the root parser trait Parsers. It’s well known that
parsing non-trivial grammars with just regular expressions tends to break down pretty
quickly. However, using regular expressions to parse individual terms inside a parsing
framework can be very effective. In our example, we exploit the productions in
JavaTokenParsers to parse quoted strings (for the employee’s name), decimal literals,
and floating-point literals.

Let’s try it out! Here is a specification that exercises the parser for two cases, without
and with deductions:

// code-examples/DSLs/payroll/pcdsl/payroll-parser-comb-v1-spec.scala

package payroll.pcdsl
import scala.util.parsing.combinator._
import org.specs._
import payroll._
import payroll.Type2Money._

object PayrollParserCombinatorsV1Spec
 extends Specification("PayrollParserCombinatorsV1") {

 "PayrollParserCombinatorsV1" should {
 "parse rules when there are no deductions" in {
 val input = """paycheck for employee "Buck Trends"
 is salary for 2 weeks minus deductions for {}"""
 val p = new PayrollParserCombinatorsV1
 p.parseAll(p.paycheck, input) match {
 case p.Success(r,_) => r.toString mustEqual
 """(("Buck Trends"~(2~weeks))~List())"""
 case x => fail(x.toString)
 }
 }

 "calculate the gross, net, and deductions for the pay period" in {
 val input =
 """paycheck for employee "Buck Trends"
 is salary for 2 weeks minus deductions for {

External DSLs with Parser Combinators | 235

 federal income tax is 25. percent of gross,
 state income tax is 5. percent of gross,
 insurance premiums are 500. in gross currency,
 retirement fund contributions are 10. percent of gross
 }"""
 val p = new PayrollParserCombinatorsV1
 p.parseAll(p.paycheck, input) match {
 case p.Success(r,_) => r.toString mustEqual
 """(("Buck Trends"~(2~weeks))~List(25., 5., 500., 10.))"""
 case x => fail(x.toString)
 }
 }
 }
}

This part of the specification shows us how to instantiate and use the parser:

val p = new PayrollParserCombinatorsV1

p.parseAll(p.paycheck, input) match {
 case p.Success(r,_) => r.toString mustEqual "..."
 case x => fail(x.toString)
}

The parseAll method is defined in a parent class. We invoke the top-level production
method, paycheck, and pass its return value as the first argument to parseAll and pass
the string to parse as the second argument.

If the parsing process is successful, the result of the parse is returned as an instance of
type p.Success[+T], a case class declared in the Parsers trait. Why is there a p. prefix?
It indicates that p.Success is a path-dependent type, which we will discuss in “Path-
Dependent Types” on page 272. For now, just know that even though Success is de-
fined in the Parsers trait, the actual type of the instance is dependent on the Payroll
ParserCombinatorsV1 instance we created. In other words, if we had another parser,
say p2 of type MyOtherParser, then p2.Success[String] would be different from
p.Success[String] and one could not be substituted for the other.

The Success instance contains two fields. The first is the result of the parse, an instance
of type T (assigned to r in the case clause). The second is the remaining input string to
parse, which will be empty after a successful parse (we will have parsed the whole string
at this point). This string is assigned to _.

If the parse fails, the returned instance is either a p.Failure or p.Error, which our
example handles with a generic case clause. Both are derived from p.NoSuccess, which
contains fields for an error message and the unconsumed input at the point of failure.
A p.Failure in a parser will trigger backtracking so that a retry with a different parser
can be invoked by the parser framework, if possible. An Error result does not trigger
backtracking and is used to signal more serious problems.

For completeness, both p.Success and p.NoSuccess derive from p.ParseResult.

236 | Chapter 11: Domain-Specific Languages in Scala

We have two big unanswered questions: what do the production methods actually
return, and what is the type of the result instance returned in the p.Success?

The production methods themselves return parsers. Most of them in our example re-
turn p.Parser[String] (again, a path-dependent type). However, because the deduct
method handles repetition (it invokes the repsep method), it actually returns a
p.Parser[List[String]]. When this parser is used, it will return a List[String], with
one string corresponding to each match in the repetition.

So, our call to p.parseAll(p.paycheck, input) earlier parses the input string using the
parser returned by p.paycheck. That brings us to the second question: what is the result
of a successful parse?

To see what’s returned, compile the PayrollParserCombinatorsV1 file listed at the be-
ginning of this section and invoke the scala interpreter with the -cp option to include
the directory where the class files were written (it will be build if you used the build
process for the code example distribution).

Once in the interpreter, enter the following expressions after the scala> prompt. (You
can also find this input the payroll-parser-comb-script.scala file in the code example
distribution.)

scala> import scala.util.parsing.combinator._
import scala.util.parsing.combinator._

scala> import payroll.pcdsl._
import payroll.pcdsl._

scala> val p = new PayrollParserCombinatorsV1
p: payroll.pcdsl.PayrollParserCombinatorsV1 = \
 payroll.pcdsl.PayrollParserCombinatorsV1@79e84310

scala> p.empl
res0: p.Parser[String] = Parser (~>)

scala> p.weeksDays
res2: p.Parser[String] = Parser (|)

scala> p.doubleNumber
res3: p.Parser[String] = Parser ()

scala> p.deduct
res1: p.Parser[List[String]] = Parser (<~)

scala> p.paycheck
res4: p.Parser[p.~[p.~[String,p.~[String,String]],List[String]]] = Parser (~)

scala> p.parseAll(p.weeksDays, "weeks")
res5: p.ParseResult[String] = [1.6] parsed: weeks

scala> val input = """paycheck for employee "Buck Trends"
 | is salary for 2 weeks minus deductions for {}"""
input: java.lang.String =

External DSLs with Parser Combinators | 237

paycheck for employee "Buck Trends"
 is salary for 2 weeks minus deductions for {}

scala> p.parseAll(p.paycheck, input)
res6: p.ParseResult[p.~[p.~[String,p.~[String,String]],List[String]]] = \
 [2.53] parsed: (("Buck Trends"~(2~weeks))~List())

scala>

We import the necessary types and create a PayrollParserCombinatorsV1 instance. Then
we call several of the production methods to see what kind of Parser each returns. The
first three—empl, weeksDays, and doubleNumber—return p.Parser[String].

Note what’s written on the righthand side in the output for the first three parsers: empl,
weeksDays, and doubleNumber. We see Parser (∼>), Parser (|), and Parser (), respec-
tively. The parsers returned reflect the definitions of the production rules, where empl
ends with a combinator of the form prod1 ∼> prod2, weeksDays returns a combinator
of the form prod1 | prod2, and doubleNumber returns a parser for a single production.

Because deduct consists of combinators that handle repetition, the parser returned by
deduct is of type p.Parser[List[String]], as we stated previously. The righthand side
of the output is Parser (<∼), because the definition of deduct ends with prod1 <∼ prod2.

Things get more interesting when we look at the top-level production, paycheck. What
is p.Parser[p.∼[p.∼[String,p.∼[String,String]],List[String]]] = Parser (∼)
supposed to mean? Well, the righthand side should be easy to understand now; the
definition of paycheck ends in prod1 ∼ prod2. What is the type parameter for
p.Parser on the lefthand side of the equals sign?

The Parsers trait also defines a case class named ∼ that represents a pair of sequential
rules:

case class ~[+a, +b](_1: a, _2: b) {
 override def toString = "("+ _1 +"~"+ _2 +")"
}

The actual path-dependent type in our example is p.∼[+a,+b]. Hence, the type param-
eter T in p.Parser[T] is p.∼[p.∼[String,p.∼[String,String]],List[String]], which is
a hierarchical tree of types.

Let’s break it down, working our way inside out. Note that there are three p.∼. We’ll
start with the innermost type, p.∼[String,String], and map the type declaration to the
output we saw in the scala session "Buck Trends"∼(2∼weeks∼List()).

The p.∼[String,String] corresponds to the parser that handles expressions like
2 weeks. Hence, the instance created when we parsed our example string was the in-
stance p.∼("2", "weeks"). Calling the p.∼.toString method produces the output
(2~weeks).

Working out one level, we have p.∼[String,p.∼[String,String]]. This combination
parses paycheck for employee "Buck Trends" is salary for 2 weeks. Recall that we

238 | Chapter 11: Domain-Specific Languages in Scala

discard paycheck for employee and is salary for, keeping only the Buck Trends and
2 weeks. So we create an instance p.∼("Buck Trends", p.∼("2", "weeks")). Calling
toString again results in the string ("Buck Trends"∼(2∼weeks)).

Finally, at the outermost level, you can see we have the following:
p.∼[p.∼[String,p.∼[String,String]],List[String]]. We’ve already discussed every-
thing up to the last List[String], which comes from the deduct production:

def deduct = "minus" ~> "deductions" ~> "for" ~>
 "{" ~> repsep(deductItem, ",") <~ "}"

We discard everything except for the list of zero or more deductItems. There are none
in our example, so we get an empty list for which toString returns List(). Therefore,
calling p.∼.toString on our outermost type, the one that parameterizes p.Parser,
returns the string "Buck Trends"∼(2∼weeks∼List()). We’re done!

Well, not quite. We’re still not calculating an actual paycheck for ol’ Buck. Let’s
complete our implementation.

Generating Paychecks with the External DSL
As we parse the DSL, we want to look up the employee by name, fetch his or her gross
salary for the specified pay period, and then calculate the deductions as we go. When
the parser returned by paycheck finishes, we want to return a Pair with the Employee
instance and the completed Paycheck.

We will reuse “domain” classes like Employee, Money, Paycheck, etc. from earlier in the
chapter. To do the calculations on demand, we will create a second iteration of
PayrollParserCombinatorsV1 that we’ll call PayrollParserCombinators. We’ll modify
the parsers returned by some of the production methods to return new kinds of parsers.
We’ll also do administrative work like storing running context data, as needed. Our
implementation won’t be thread-safe. You’ll want to ensure that only one thread uses
a given PayrollParserCombinators. We could make it more robust, but doing so isn’t
the goal of this exercise.

Here is our final PayrollParserCombinators:

// code-examples/DSLs/payroll/pcdsl/payroll-parser-comb.scala

package payroll.pcdsl
import scala.util.parsing.combinator._
import org.specs._
import payroll._
import payroll.Type2Money._

class UnknownEmployee(name: Name) extends RuntimeException(name.toString)

class PayrollParserCombinators(val employees: Map[Name, Employee])
 extends JavaTokenParsers {

 var currentEmployee: Employee = null

External DSLs with Parser Combinators | 239

 var grossAmount: Money = Money(0)

 /** @return Parser[(Employee, Paycheck)] */
 def paycheck = empl ~ gross ~ deduct ^^ {
 case e ~ g ~ d => (e, Paycheck(g, g-d, d))
 }

 /** @return Parser[Employee] */
 def empl = "paycheck" ~> "for" ~> "employee" ~> employeeName ^^ { name =>
 val names = name.substring(1, name.length-1).split(" ") // remove ""
 val n = Name(names(0), names(1));
 if (! employees.contains(n))
 throw new UnknownEmployee(n)
 currentEmployee = employees(n)
 currentEmployee
 }

 /** @return Parser[Money] */
 def gross = "is" ~> "salary" ~> "for" ~> duration ^^ { dur =>
 grossAmount = salaryForDays(dur)
 grossAmount
 }

 def deduct = "minus" ~> "deductions" ~> "for" ~> "{" ~> deductItems <~ "}"

 /**
 * "stringLiteral" provided by JavaTokenParsers
 * @return Parser[String]
 */
 def employeeName = stringLiteral

 /**
 * "decimalNumber" provided by JavaTokenParsers
 * @return Parser[Int]
 */
 def duration = decimalNumber ~ weeksDays ^^ {
 case n ~ factor => n.toInt * factor
 }

 def weeksDays = weeks | days

 def weeks = "weeks?".r ^^ { _ => 5 }

 def days = "days?".r ^^ { _ => 1 }

 /** @return Parser[Money] */
 def deductItems = repsep(deductItem, ",") ^^ { items =>
 items.foldLeft(Money(0)) {_ + _}
 }

 /** @return Parser[Money] */
 def deductItem = deductKind ~> deductAmount

 def deductKind = tax | insurance | retirement

240 | Chapter 11: Domain-Specific Languages in Scala

 def tax = fedState <~ "income" <~ "tax"

 def fedState = "federal" | "state"

 def insurance = "insurance" ~> "premiums"

 def retirement = "retirement" ~> "fund" ~> "contributions"

 def deductAmount = percentage | amount

 /** @return Parser[Money] */
 def percentage = toBe ~> doubleNumber <~ "percent" <~ "of" <~ "gross" ^^ {
 percentage => grossAmount * (percentage / 100.)
 }

 def amount = toBe ~> doubleNumber <~ "in" <~ "gross" <~ "currency" ^^ {
 Money(_)
 }

 def toBe = "is" | "are"

 def doubleNumber = floatingPointNumber ^^ { _.toDouble }

 // Support method. Assume 260 (52 * 5) paid work days/year
 def salaryForDays(days: Int) =
 (currentEmployee.annualGrossSalary / 260.0) * days
}

For simplicity, we’ll use a map of “known” employees, keyed by Name instances, that
we save as a field in PayrollParserCombinators. A real implementation would probably
use a data store of some kind.

There are two other fields: currentEmployee, which remembers which employee we are
processing, and grossAmount, which remembers the gross amount of pay for the em-
ployee for the pay period. Both fields have a slight design smell. They are mutable. They
are set only once per parse, but not when they are declared, only when we parse the
input that allows us to calculate them. You might have also noticed that if the same
PayrollParserCombinators instance is used more than once, we don’t reset these fields
to their default values. No doubt it would be possible to write scripts in the DSL that
exploit this bug.

These weaknesses are not inherent to parser combinators. They reflect simplifications
we used for our purposes. As an exercise, you might try improving the implementation
to eliminate these weaknesses.

We have added Javadoc-style @return annotations for most of the productions to make
it clear what they are now returning. In some cases, the productions are unchanged, as
the original parser instances are fine as is. Most of the changes reflect our desire to
calculate the paycheck as we go.

External DSLs with Parser Combinators | 241

Consider the new paycheck production:

/** @return Parser[(Employee, Paycheck)] */
def paycheck = empl ~ gross ~ deduct ^^ {
 case e ~ g ~ d => (e, Paycheck(g, g-d, d))
}

Now, we return a Pair with the Employee and the computed Paycheck. The empl ∼ gross
∼ deduct combination would still return Parser[String] (we’ll drop the path-
dependent prefix for now). We have added a new combinator ^^, e.g., prod1 ^^
func1, where func1 is a function. If prod1 succeeds, then the result of applying func1 to
the result of prod1 is returned. That is, we return func1(prod1).

For paycheck, we give it a function literal that does a pattern match to extract the three
results from empl, gross, and deduct, respectively. We create a 2-tuple (Pair) with e,
the Employee, and a Paycheck calculated from the gross salary for the pay period (in g)
and the sum of all the deductions (in d).

It’s important to keep clear that the anonymous function passed as an argument to
^^ returns a tuple (Employee, Paycheck), but the production paycheck method itself
returns a Parser[(Employee, Paycheck)]. This pattern has been true from the beginning,
actually, where Strings were always involved in our first version. It will remain true for
all the production rules in PayrollParserCombinators.

The empl production assumes the employee’s first name and last name are given. (Ob-
viously, this would be inadequate in a real application.)

/** @return Parser[Employee] */
def empl = "paycheck" ~> "for" ~> "employee" ~> employeeName ^^ { name =>
 val names = name.substring(1, name.length-1).split(" ") // remove ""
 val n = Name(names(0), names(1));
 if (! employees.contains(n))
 throw new UnknownEmployee(n)
 currentEmployee = employees(n)
 currentEmployee
}

To construct the name, the embedded double quotes have to be removed, which is why
we start by extracting the substring that tosses the first and last characters. The name
is used to look up the Employee instance in the map, saving the value in the curren
tEmployee field. In general, there is not a lot of “graceful” error handling in PayrollPar
serCombinators. However, the empl method handles the case where no employee is
found with the specified name, throwing an UnknownEmployee exception when this
occurs.

The rest of the productions work similarly. Sometimes, a parser converts an input string
to an Int (e.g., duration) or a Money (e.g., gross). An interesting case is deduct. It folds
the list of deductions into a single deduction amount, using addition. The foldLeft
method takes two argument lists. The first has a single argument that specifies the initial
value, in this case, zero Money. The second argument list has a single function literal
argument that takes two arguments: the accumulated value of the folding operation,

242 | Chapter 11: Domain-Specific Languages in Scala

and an item from the list. In this case, we return the sum of the arguments. So,
foldLeft iterates over the items collection, adding them together. See “Traversing,
Mapping, Filtering, Folding, and Reducing” on page 174 for more information on
foldLeft and related operations.

The weeks and days productions remind us that we are using parser combinators based
on regular-expressions. (We’re also using stringLiteral, decimalNumber, and floating
PointNumber provided by JavaTokenParsers.) Note that weeks and days ignore the parsed
string. They just return a multiplication factor used to determine total days in the pay
period in the duration production rule.

There are other combinator methods for applying functions to parser results in different
ways. See the Parsers Scaladoc page for details.

The following (somewhat incomplete) specification shows the calculation of paychecks
when there are no deductions and when there are several deductions:

// code-examples/DSLs/payroll/pcdsl/payroll-parser-comb-spec.scala

package payroll.pcdsl
import scala.util.parsing.combinator._
import org.specs._
import payroll._
import payroll.Type2Money._

// Doesn't test "sad path" scenarios...
object PayrollParserCombinatorsSpec
 extends Specification("PayrollParserCombinators") {

 val salary = Money(100000.1) // for a full year
 val gross = salary / 26. // for two weeks
 val buck = Employee(Name("Buck", "Trends"), salary)
 val employees = Map(buck.name -> buck)

 implicit def money2double(m: Money) = m.amount.doubleValue

 "PayrollParserCombinators" should {
 "calculate the gross == net when there are no deductions" in {
 val input = """paycheck for employee "Buck Trends"
 is salary for 2 weeks minus deductions for {}"""
 val p = new PayrollParserCombinators(employees)
 p.parseAll(p.paycheck, input) match {
 case p.Success(Pair(employee, paycheck),_) =>
 employee mustEqual buck
 paycheck.gross must beCloseTo(gross, Money(.001))
 paycheck.net must beCloseTo(gross, Money(.001))
 // zero deductions?
 paycheck.deductions must beCloseTo(Money(0.), Money(.001))
 case x => fail(x.toString)
 }
 }

 "calculate the gross, net, and deductions for the pay period" in {
 val input =

External DSLs with Parser Combinators | 243

 """paycheck for employee "Buck Trends"
 is salary for 2 weeks minus deductions for {
 federal income tax is 25. percent of gross,
 state income tax is 5. percent of gross,
 insurance premiums are 500. in gross currency,
 retirement fund contributions are 10. percent of gross
 }"""

 val p = new PayrollParserCombinators(employees)
 p.parseAll(p.paycheck, input) match {
 case p.Success(Pair(employee, paycheck),_) =>
 employee mustEqual buck
 val deductions = (gross * .4) + Money(500)
 val net = gross - deductions
 paycheck.gross must beCloseTo(gross, Money(.001))
 paycheck.net must beCloseTo(net, Money(.001))
 paycheck.deductions must beCloseTo(deductions, Money(.001))
 case x => fail(x.toString)
 }
 }
 }
}

If you work out what the results should be from the input strings, you’ll see that the
implementation correctly calculates the paycheck.

Besides the many small details that differ between this implementation of the external
DSL and the previous implementation of the internal DSL, there is one big conceptual
difference from the two implementations. Here we are computing the paycheck as we
parse code written in the external DSL. In the internal DSL case, we generated a
paycheck calculator when we parsed the DSL. Afterward, we used that calculator to
compute paychecks for one employee at a time. We could have generated a paycheck
calculator like we did before, but we chose a simpler approach to focus on the con-
struction of the parser itself. Also, as we discussed earlier, we weren’t as careful about
thread safety and other issues in the implementation.

Internal Versus External DSLs: Final Thoughts
Scala provides rich support for creating your own internal and external DSLs. However,
a non-trivial DSL can be a challenge to implement and debug. For the examples in this
chapter, the parser combinators implementation was easier to design and write than
the implementation for the internal DSL. However, we found that debugging the
internal DSL was easier.

244 | Chapter 11: Domain-Specific Languages in Scala

You must also consider how robust the parser must be when handling invalid input.
Depending on the level of sophistication of the users of the DSL, you may need to
provide very good feedback when errors occur, especially when your users are non-
programmers. The parser combinator library in Scala version 2.8 will provide improved
support for error recovery and reporting, compared to the version 2.7.X library.

The version 2.8 library will also provide support for writing packrat parsers that can
implement unambiguous parsing expression grammars (PEGs). The 2.8 implementa-
tion of packrat parsers also supports memoization, which helps improve performance,
among other benefits. If you need a fast parser, a packrat parser will take you further
before you need to consider more specialized tools, like parser generators.

Recap and What’s Next
It’s tempting to create DSLs with abandon. DSLs in Scala can be quite fun to work with,
but don’t underestimate the effort required to create robust DSLs that meet your clients
usability needs, nor long-term maintenance and support issues.

If you choose to write a DSL, you have rich options in Scala. The syntax is flexible yet
powerful enough that an internal DSL may be sufficient. A internal DSL is an excellent
starting point, especially if other programmers will be the primary writers of code in
the DSL.

If you expect your non-programming stakeholders to read or even write code written
in the DSL, it might be worth the extra effort to create an external DSL that eliminates
as many of the programming-language idioms as possible. Consider whether the code
written in the DSL will need to be processed for other purposes, like generating docu-
mentation, spreadsheets, etc. Since you will have to write a parser for the DSL anyway,
it might be straightforward to write others to handle these different purposes.

In the next chapter, we’ll explore the richness of Scala’s type system. We’ve learned
many of its features already. Now, we’ll explore the type system in full detail.

Recap and What’s Next | 245

CHAPTER 12

The Scala Type System

Scala is a statically typed language. Its type system is one of the most sophisticated in
any programming language, in part because it combines comprehensive ideas from
functional programming and object-oriented programming. The type system tries to
be logically comprehensive, complete, and consistent. It exceeds limitations in Java’s
type system while containing innovations that appear in Scala for the first time.

However, the type system can be intimidating at first, especially if you come from a
dynamically typed language like Ruby or Python. Fortunately, type inference hides
most of the complexities away. Most of the time, you don’t need to know the particu-
lars, so we encourage you not to worry that you must master the type system in order
to use Scala effectively. You might choose to skim this chapter if you’re new to Scala,
so you’ll know where to look when type-related questions arise later.

Still, the more you know about the type system, the more you will be able to exploit
its features in your programs. This is especially true for library writers, who will want
to understand when to use parameterized types versus abstract types, which type pa-
rameters should be covariant, contravariant, or invariant under subtyping, and so forth.
Also, some understanding of the type system will help you understand and debug the
occasional compilation failure related to typing. Finally, this understanding will help
you make sense of the type information shown in the sources and Scaladocs for Scala
libraries.

If you didn’t understand some of the terms we used in the preceding paragraphs, don’t
worry. We’ll explain them and why they are useful. We’re not going to discuss Scala’s
type system in exhaustive detail. Rather, we want you to come away with a pragmatic
understanding of the type system. You should develop an awareness of the features
available, what purposes they serve, and how to read and understand type declarations.

We’ll also highlight similarities with Java’s type system, since it may be a familiar point
of reference for you. Understanding the differences is also useful for interoperability
with Java libraries. To focus the discussion, we won’t cover the .NET type system,
except to point out some notable differences that .NET programmers will want to
know.

247

Reflecting on Types
Scala supports the same reflection capabilities that Java and .NET support. The syntax
is different in some cases.

First, you can use the same methods you might use in Java or .NET code. The following
script shows some of the reflection methods available on the JVM, through
java.lang.Object and java.lang.Class:

// code-examples/TypeSystem/reflection/jvm-script.scala

trait T[A] {
 val vT: A
 def mT = vT
}

class C extends T[String] {
 val vT = "T"
 val vC = "C"
 def mC = vC

 class C2
 trait T2
}

val c = new C
val clazz = c.getClass // method from java.lang.Object
val clazz2 = classOf[C] // Scala method: classOf[C] ~ C.class
val methods = clazz.getMethods // method from java.lang.Class<T>
val ctors = clazz.getConstructors // ...
val fields = clazz.getFields
val annos = clazz.getAnnotations
val name = clazz.getName
val parentInterfaces = clazz.getInterfaces
val superClass = clazz.getSuperclass
val typeParams = clazz.getTypeParameters

Note that these methods are only available on subtypes of AnyRef.

The classOf[T] method returns the runtime representation for a Scala type. It is anal-
ogous to the Java expression T.class. Using classOf[T] is convenient when you have
a type that you want information about, while getClass is convenient for retrieving the
same information from an instance of the type.

However, classOf[T] and getClass return slightly different values, reflecting the effect
of type erasure on the JVM, in the case of getClass:

scala> classOf[C]
res0: java.lang.Class[C] = class C

scala> c.getClass
res1: java.lang.Class[_] = class C

248 | Chapter 12: The Scala Type System

Although .NET does not have type erasure, meaning it supports reified
types, the .NET version of Scala currently follows the JVM’s erasure
model in order to avoid incompatibilities that would require a “forked”
implementation.

We’ll discuss a workaround for erasure, called Manifests, after we discuss parameter-
ized types in the next section.

Scala also provides methods for testing whether an object matches a type and also for
casting an object to a type.

x.isInstanceOf[T] will return true if the instance x is of type T. However, this test is
subject to type erasure. For example, List(3.14159).isInstanceOf[List[String]] will
return true because the type parameter of List is lost at the byte code level. However,
you’ll get an “unchecked” warning from the compiler.

x.asInstanceOf[T] will cast x to T or throw a ClassCastException if T and the type of
x are not compatible. Once again, type erasure must be considered with parameterized
types. The expression List(3.14159).asInstanceOf[List[String]] will succeed.

Note that these two operations are methods and not keywords in the language, and
their names are deliberately somewhat verbose. Normally, type checks and casts like
these should be avoided. For type checks, use pattern matching instead. For casts,
consider why a cast is necessary and determine if a refactoring of the design can elim-
inate the requirement for a cast.

At the time of this writing, there are some experimental features that
might appear in the final version 2.8 release in the scala.reflect pack-
age. These features are designed to make reflective examination and
invocation of code easier than using the corresponding Java methods.

Understanding Parameterized Types
We introduced parameterized types and methods in Chapter 1, and filled in a few more
details in “Abstract Types And Parameterized Types” on page 47. If you come from a
Java or C# background, you probably already have some knowledge of parameterized
types and methods. Now we explore the details of Scala’s sophisticated support for
parameterized types.

Scala’s parameterized types are similar to Java and C# generics and C++ templates.
They provide the same capabilities as Java generics, but with significant differences and
extensions, reflecting the sophistication of Scala’s type system.

To recap, a declaration like class List[+A] means that List is parameterized by a single
type, represented by A. The + is called a variance annotation. We’ll come back to it in
“Variance Under Inheritance” on page 251.

Understanding Parameterized Types | 249

Sometimes, a parameterized type like List is called a type constructor, because it is used
to create specific types. For example, List is the type constructor for List[String] and
List[Int], which are different types (although they are actually implemented with the
same byte code due to type erasure). In fact, it’s more accurate to say that all traits and
classes are type constructors. Those without type parameters are effectively zero-
argument, parameterized types.

If you write class StringList[String] extends List[String] {...},
Scala will interpret String as the name of the type parameter, not the
creation of a type based on actual Strings. You want to write class
StringList extends List[String] {...}.

Manifests
There is an experimental feature in Scala (since version 2.7.2), called Manifests, that
captures type information that is erased in the byte code. This feature is not documented
in the Scaladocs, but you can examine the source for the scala.reflect.Manifest trait.
[Ortiz2008] discusses Manifests and provides examples of their use.

A Manifest is declared as an implicit argument to a method or type that wants to capture
the erased type information. Unlike most implicit arguments, the user does not need
to supply an in-scope Manifest value or method. Instead, the compiler generates one
automatically. Here is an example that illustrates some of the strengths and weaknesses
of Manifests:

// code-examples/TypeSystem/manifests/manifest-script.scala

import scala.reflect.Manifest

object WhichList {
 def apply[B](value: List[B])(implicit m: Manifest[B]) = m.toString match {
 case "int" => println("List[Int]")
 case "double" => println("List[Double]")
 case "java.lang.String" => println("List[String]")
 case _ => println("List[???]")
 }
}

WhichList(List(1, 2, 3))
WhichList(List(1.1, 2.2, 3.3))
WhichList(List("one", "two", "three"))

List(List(1, 2, 3), List(1.1, 2.2, 3.3), List("one", "two", "three")) foreach {
 WhichList(_)
}

WhichList tries to determine the type of list passed in. It uses the value of the Manifest’s
toString method to determine this information. Notice that it works when the list is
constructed inside the call to WhichList.apply. It does not work when a previously
constructed list is passed to WhichList.apply.

250 | Chapter 12: The Scala Type System

The compiler exploits the type information it knows in the first case to construct the
implicit Manifest with the correct B. However, when given previously constructed lists,
the crucial type information is already lost.

Hence, Manifests can’t “resurrect” type information from byte code, but they can be
used to capture and exploit type information before it is erased.

Parameterized Methods
Individual methods can also be parameterized. Good examples are the apply methods
in companion objects for parameterized classes. Recall that companion objects are
singleton objects associated with a companion class. There is only one instance of a
singleton object, as its name implies, so type parameters would be meaningless.

Let’s consider object List, the companion object for class List[+A]. Here is the def-
inition of the apply method in object List:

def apply[A](xs: A*): List[A] = xs.toList

The apply methods takes a variable length list of arguments of type A, which will be
inferred from the arguments, and returns a list created from the arguments. Here is an
example:

val languages = List("Scala", "Java", "Ruby", "C#", "C++", "Python", ...)
val positiveInts = List(1, 2, 3, 4, 5, 6, 7, ...)

We’ll look at other parameterized methods shortly.

Variance Under Inheritance
An important difference between Java and Scala generics is how variance under inher-
itance works. For example, if a method has an argument of type List[AnyRef], can you
pass a List[String] value? In other words, should a List[String] be considered a
subtype of List[AnyRef]? If so, this kind of variance is called covariance, because the
supertype-subtype relationship of the container (the parameterized type) “goes in the
same direction” as the relationship between the type parameters. In other contexts, you
might want contravariant or invariant behavior, which we’ll describe shortly.

In Scala, the variance behavior is defined at the declaration site using variance annota-
tions: +, -, or nothing. In other words, the type designer decides how the type should
vary under inheritance.

Let’s examine the three kinds of variance, summarized in Table 12-1, and understand
how to use them effectively. We’ll assume that Tsup is a supertype of T and Tsub is a
subtype of T.

Variance Under Inheritance | 251

Table 12-1. Type variance annotations and their meanings

Annotation Java equivalent Description

+ ? extends T Covariant subclassing. E.g., List[Tsub] is a subtype of List[T].

- ? super T Contravariant subclassing. E.g., X[Tsup] is a subtype of X[T].

none T Invariant subclassing. E.g., Can’t substitute Y[Tsup] or Y[Tsub] for Y[T].

The “Java equivalent” column is a bit misleading; we’ll explain why in a moment.

Class List is declared List[+A], which means that List[String] is a subclass of
List[AnyRef], so Lists are covariant in the type parameter A. (When a type like List
has only one covariant type parameter, you’ll often hear the shorthand expression “Lists
are covariant” and similarly for types with a single contravariant type parameter.)

The traits FunctionN, for N equals 0 to 22, are used by Scala to implement function values
as true objects. Let’s pick Function1 as a representative example. It is declared trait
Function1[-T, +R].

The +R is the return type and has the covariant annotation +. The type for the single
argument has the contravariant annotation -. For functions with more than one argu-
ment, all the argument types have the contravariant annotation. So, for example, using
our T, Tsup, and Tsub types, the following definition would be legal:

val f: Function1[T, T] = new Function1[Tsup, Tsub] { ... }

Hence, the function traits are covariant in the return type parameter R and contravariant
in the argument parameters T1, T2, ..., TN.

So, what does this really mean? Let’s look at an example to understand the variance
behavior. If you have prior experience with Design by Contract (see [DesignByCon-
tract]), it might help you to recall how it works, which is very similar. (We will discuss
Design by Contract briefly in “Better Design with Design By Contract” on page 340.)
This script demonstrates variance under inheritance:

// code-examples/TypeSystem/variances/func-script.scala
// WON'T COMPILE

class CSuper { def msuper = println("CSuper") }
class C extends CSuper { def m = println("C") }
class CSub extends C { def msub = println("CSub") }

var f: C => C = (c: C) => new C // #1
 f = (c: CSuper) => new CSub // #2
 f = (c: CSuper) => new C // #3
 f = (c: C) => new CSub // #4
 f = (c: CSub) => new CSuper // #5: ERROR!

This script doesn’t produce any output. If you run it, it will fail to compile on the last
line.

252 | Chapter 12: The Scala Type System

We start by defining a very simple hierarchy of three classes, C and its superclass
CSuper and its subtype CSub. Each one defines a method, which we’ll exploit shortly.

Next we define a var named f on the line with the #1 comment. It is a function with
the signature C => C. More precisely, it is of type Function1(-C,+C). To be clear, the
value assigned to f is after the equals sign, (c: C) => new C. We actually ignore the
input c value and just create a new C.

Now we assign different anonymous function values to f. We use whitespace to make
the similarities and differences stand out when comparing the original declaration of
f and the subsequent reassignments. We keep reassigning to f because we are just
testing what will and won’t compile at this point. Specifically, we want to know what
function values we can legally assign to f: (C) => C.

The second assignment on line #2 assigns (x:CSuper) => new CSub as the function value.
This also works, because the argument to Function1 is contravariant, so we can sub-
stitute the supertype, while the return type of Function1 is covariant, so our function
value can return an instance of the subtype.

The next two lines also work. On line #3, we use a CSuper for the argument, which
works as it did in line #2. We return a C, which also works as expected. Similarly, on
line #4, we use C as the argument and CSub as the return type, both of which worked
fine in the previous lines.

The last line, #5, does not compile because we are attempting to use a covariant argu-
ment in a contravariant position. We’re also attempting to use a contravariant return
value where only covariant values are allowed.

Why is the behavior correct in these cases? Here’s where Design by Contract thinking
comes in handy. Let’s see how a client might use some of these definitions of f:

// code-examples/TypeSystem/variances/func2-script.scala
// WON'T COMPILE

class CSuper { def msuper = println("CSuper") }
class C extends CSuper { def m = println("C") }
class CSub extends C { def msub = println("CSub") }

def useF(f: C => C) = {
 val c1 = new C // #1
 val c2: C = f(c1) // #2
 c2.msuper // #3
 c2.m // #4
}

useF((c: C) => new C) // #5
useF((c: CSuper) => new CSub) // #6
useF((c: CSub) => {println(c.msub); new CSuper}) // #7: ERROR!

The useF method takes a function C => C as an argument. (We’re just passing function
literals now, rather than assigning them to f.) It creates a C (line #1) and passes it to

Variance Under Inheritance | 253

the input function to create a new C (line #2). Then it uses the features of C; namely, it
calls the msuper and m methods (lines #3 and #4, respectively).

You could say that the useF method specifies a contract of behavior. It expects to be
passed a function that can take a C and return a C. It will call the passed-in function,
passing a C instance to it, and it will expect to receive a C back.

In line #5, we pass useF a function that takes a C and returns a C. The returned C will
work with lines #3 and #4, by definition. All is good.

Finally, we come to the point of this example. In line #6, we pass in a function that is
“willing” to accept a CSuper and “promises” to return a CSub. That is, this function is
type inferred to be Function1[CSuper,CSub]. In effect, it widens the allowed instances
by accepting a supertype. Keep in mind that it will never actually be passed a CSuper
by useF, only a C. However, since it can accept a wider set of instances, it will work fine
if it only gets C instances.

Similarly, by “promising” to return a CSub, this anonymous function narrows the pos-
sible values returned to useF. That’s OK, too, because useF will accept any C in return,
so if it only gets CSubs, it will be happy. Lines #3 and #4 will still work.

Applying the same arguments, we can see why the last line in the script, line #7, fails
to compile. Now the anonymous function can only accept a CSub, but useF will pass it
a C. The body of the anonymous function would now break, because it calls c.msub,
which doesn’t exist in C. Similarly, returning a CSuper when a C is expected breaks line
#4 in useF, because CSuper doesn’t have the m method.

The same arguments are used to explain how contracts can change under inheritance
in Design by Contract.

Note that variance annotations only make sense on the type parameters for parame-
terized types, not parameterized methods, because the annotations affect the behavior
of subtyping. Methods aren’t subtyped, but the types that contain them might be
subtyped.

The + variance annotation means the parameterized type is covariant in
the type parameter. The - variance annotation means the parameterized
type is contravariant in the type parameter. No variance annotation
means the parameterized type is invariant in the type parameter.

Finally, the compiler checks your use of variance annotations for problems like the one
we just described in the last lines of the examples. Suppose you attempted to define
your own function type this way:

trait MyFunction2[+T1, +T2, -R] {
 def apply(v1:T1, v2:T2): R = { ... }
 ...
}

254 | Chapter 12: The Scala Type System

The compiler would throw the following errors for the apply method:

... error: contravariant type R occurs in covariant position in type (T1,T2)R
 def apply(v1:T1, v2:T2):R
 ^
... error: covariant type T1 occurs in contravariant position in type T1 ...
 def apply(v1:T1, v2:T2):R
 ^
... error: covariant type T2 occurs in contravariant position in type T2 ...
 def apply(v1:T1, v2:T2):R
 ^

Variance of Mutable Types
All the parameterized types we’ve discussed so far have been immutable types. What
about the variance behavior of mutable types? The short answer is that only invari-
ance is allowed. Consider this example:

// code-examples/TypeSystem/variances/mutable-type-variance-script.scala
// WON'T COMPILE: Mutable parameterized types can't have variance annotations

class ContainerPlus[+A](var value: A) // ERROR
class ContainerMinus[-A](var value: A) // ERROR

println(new ContainerPlus("Hello World!"))
println(new ContainerMinus("Hello World!"))

Running this script throws the following errors:

... 4: error: covariant type A occurs in contravariant position in type A \
 of parameter of setter value_=
class ContainerPlus[+A](var value: A) // ERROR
 ^
... 5: error: contravariant type A occurs in covariant position in type => A \
 of method value
class ContainerMinus[-A](var value: A) // ERROR
 ^
two errors found

We can make sense of these errors by remembering our discussion of FunctionN type
variance under inheritance, where the types of the function arguments are contravar-
iant (i.e., -T1) and the return type is covariant (i.e., +R).

The problem with a mutable type is that at least one of its fields has the equivalent of
read and write operations, either through direct access or through accessor methods.

In the first error, we are trying to use a covariant type as an argument to a setter (write)
method, but we saw from our discussion of function types that argument types to a
method must be contravariant. A covariant type is fine for the getter (read) method.

Similarly, for the second error, we are trying to use a contravariant type as the return
value of a read method, which must be covariant. For the write method, the contra-
variant type is fine.

Variance Under Inheritance | 255

Hence, the compiler won’t let us use a variance annotation on a type that is used for a
mutable field. For this reason, all the mutable parameterized types in the Scala library
are invariant in their type parameters. Some of them have corresponding immutable
types that have covariant or contravariant parameters.

Variance In Scala Versus Java
As we said, the variance behavior is defined at the declaration site in Scala. In Java, it
is defined at the call site. The client of a type defines the variance behavior desired (see
[Naftalin2006]). In other words, when you use a Java generic and specify the type
parameter, you also specify the variance behavior (including invariance, which is the
default). You can’t specify variance behavior at the definition site in Java, although you
can use expressions that look similar. Those expressions define type bounds, which
we’ll discuss shortly.

In Java variance specifications, a wildcard ? always appears before the super or
extends keyword, as shown earlier in Table 12-1. When we said after the table that the
“Java Equivalent” column is a bit misleading, we were referring to the differences be-
tween declaration versus call site specifications. There is another way in which the Scala
and Java behaviors differ, which we’ll cover in “Existential Types” on page 284.

A drawback of call-site variance specifications is that they force the users of Java ge-
nerics to understand the type system more thoroughly than is necessary for users of
Scala parameterized types, who don’t need to specify this behavior when using para-
meterized types. (Scala users also benefit greatly from type inference.)

Let’s look at a Java example, a simplified Java version of Scala’s Option, Some, and
None types:

// code-examples/TypeSystem/variances/Option.java

package variances;

abstract public class Option<T> {
 abstract public boolean isEmpty();

 abstract public T get();

 public T getOrElse(T t) {
 return isEmpty() ? t : get();
 }
}

// code-examples/TypeSystem/variances/Some.java

package variances;

public class Some<T> extends Option<T> {

 public Some(T value) {
 this.value = value;

256 | Chapter 12: The Scala Type System

 }

 public boolean isEmpty() { return false; }

 private T value;

 public T get() { return value; }

 public String toString() {
 return "Option(" + value + ")";
 }
}

// code-examples/TypeSystem/variances/None.java

package variances;

public class None<T> extends Option<T> {

 public boolean isEmpty() { return true; }

 public T get() { throw new java.util.NoSuchElementException(); }

 public String toString() {
 return "None";
 }
}

Here is an example that uses this Java Option hierarchy:

// code-examples/TypeSystem/variances/OptionExample.java

package variances;
import java.io.*;
import shapes.*; // From "Introducing Scala" chapter

public class OptionExample {
 static String[] shapeNames = {"Rectangle", "Circle", "Triangle", "Unknown"};
 static public void main(String[] args) {

 Option<? extends Shape> shapeOption =
 makeShape(shapeNames[0], new Point(0.,0.), 2., 5.);
 print(shapeNames[0], shapeOption);

 shapeOption = makeShape(shapeNames[1], new Point(0.,0.), 2.);
 print(shapeNames[1], shapeOption);

 shapeOption = makeShape(shapeNames[2],
 new Point(0.,0.), new Point(2.,0.), new Point(0.,2.));
 print(shapeNames[2], shapeOption);

 shapeOption = makeShape(shapeNames[3]);
 print(shapeNames[3], shapeOption);
 }

 static public Option<? extends Shape> makeShape(String shapeName,

Variance Under Inheritance | 257

 Object... args) {
 if (shapeName == shapeNames[0])
 return new Some<Rectangle>(new Rectangle((Point) args[0],
 (Double) args[1], (Double) args[2]));
 else if (shapeName == shapeNames[1])
 return new Some<Circle>(new Circle((Point) args[0], (Double) args[1]));
 else if (shapeName == shapeNames[2])
 return new Some<Triangle>(new Triangle((Point) args[0],
 (Point) args[1], (Point) args[2]));
 else
 return new None<Shape>();
 }

 static void print(String name, Option<? extends Shape> shapeOption) {
 System.out.println(name + "? " + shapeOption);
 }
}

OptionExample.main uses the Shape hierarchy from Chapter 1, but we have updated it
slightly to exploit features that we’ve learned since then, such as case classes:

// code-examples/TypeSystem/shapes/shapes.scala

package shapes {
 case class Point(x: Double, y: Double) {
 override def toString() = "Point(" + x + "," + y + ")"
 }

 abstract class Shape() {
 def draw(): Unit
 }

 case class Circle(center: Point, radius: Double) extends Shape {
 def draw() = println("Circle.draw: " + this)
 }

 case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape {
 def draw() = println("Rectangle.draw: " + this)
 }

 case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape() {
 def draw() = println("Triangle.draw: " + this)
 }
}

Running OptionExample with scala -cp ... variances.OptionExample produces the
following output:

Rectangle? Option(Rectangle(Point(0.0,0.0),2.0,5.0))
Circle? Option(Circle(Point(0.0,0.0),2.0))
Triangle? Option(Triangle(Point(0.0,0.0),Point(2.0,0.0),Point(0.0,2.0)))
Unknown? None

258 | Chapter 12: The Scala Type System

By the way, we are also demonstrating Scala-Java interoperability, which we’ll revisit
in “Java Interoperability” on page 369.

OptionExample.main calls the static factory method makeShape, whose arguments are the
name of a geometric shape and a variable length list of parameters to pass to the
Shape constructors.

Note that makeShape returns Option<? extends Shape>, and when we instantiate a
Shape, we return a Some parameterized with the Shape subtype it wraps. If an unknown
shape name is passed in, then we return a None<Shape>. We must parameterize a None
instance with Shape. Because Scala defines a subtype of all types, Nothing, Scala can
define None as case object None extends Option[Nothing].

The Java type system provides no way to implement our Java None in a similar way.
Having a singleton object None has a number of advantages, including greater efficiency,
because we aren’t creating lots of little objects, and unambiguous behavior of equals,
because we don’t need to define the semantics of equality between different type in-
stantiations of our Java None<?> type—for example, None<String> versus None<Shape>.

Finally, note that OptionExample, a client of Option, has to specify type variance,
Option<? extends Shape> in several places. In Scala, the client doesn’t carry this burden.

Implementation Notes
The implementation of parameterized types and methods is worth noting. The imple-
mentations are generated when the defining source file is compiled. For each type pa-
rameter, the implementation assumes that Any subtype could be specified (Object is
used in Java generics). These aspects have performance implications that we will revisit
when we discuss the @specialized annotation in “Annotations” on page 289.

Type Bounds
When defining a parameterized type or method, it may be necessary to specify
bounds on the type. For example, a parameterized type might assume that a particular
type parameter contains certain methods.

Upper Type Bounds
Consider the overloaded apply methods in object scala.Array that create new arrays.
There are optimized implementations for each of the AnyVal types. There is another
implementation of apply that is parameterized for any type that is a subtype of
AnyRef. Here is the implementation in Scala version 2.7.5:

object Array {
 ...
 def apply[A <: AnyRef](xs: A*): Array[A] = {
 val array = new Array[A](xs.length)

Type Bounds | 259

 var i = 0
 for (x <- xs.elements) { array(i) = x; i += 1 }
 array
 }
 ...
}

The type parameter A <: AnyRef means “any type A that is a subtype of AnyRef.” Note
that a type is always a subtype and a supertype of itself, so A could also equal AnyRef.
So the <: operator indicates that the type to the left must be derived from the type to
the right, or that they must be the same type. As we said in “Reserved
Words” on page 49, this operator is actually a reserved word in the language.

These bounds are called upper type bounds, following the de facto convention that
diagrams of type hierarchies put subtypes below their supertypes. We followed this
convention in the diagram shown in “The Scala Type Hierarchy” on page 155.

Without the bound in this case, i.e., if the signature were def apply[A](xs: A*):
Array[A], the declaration would be ambiguous with the other apply methods for each
of the AnyVal types.

The type signature A <: B says that A must be a subtype of B. In Java, this
would be expressed as A extends B in a type declaration. This is different
from instantiating a type at a call site, where the syntax ? extends B is
used in Java, indicating the variance behavior.

Keep in mind the distinction between type variance and type bounds. For a type like
List, the variance behavior describes how actual types instantiated from it, like
List[AnyRef] and List[String], are related. In this case, List[String] is a subtype of
List[AnyRef], since String is a subtype of AnyRef.

In contrast, lower and upper type bounds limit the allowed types that can be used for
a type parameter when instantiating a type from a parameterized type. For example,
def apply[A <: AnyRef]... says that any type used for A must be a subtype of AnyRef.

Lower Type Bounds
Similarly, there are circumstances when we might want to express that only super
types of a particular type are allowed. (Recall that a type is also a supertype of itself.)
We call these lower type bounds, again because the allowed type would be above the
boundary in a typical type hierarchy diagram.

A particularly interesting example is the :: (“cons”) method in class List[+A]. Recall
that this operator is used to create a new list by prepending an element to a list:

class List[+A] {
 ...
 def ::[B >: A](x : B) : List[B] = new scala.::(x, this)

260 | Chapter 12: The Scala Type System

 ...
}

The new list will be of type List[B], specifically a scala.::. The :: class (as opposed
to the :: method) is derived from List. We’ll come back to it in a moment.

The :: method can prepend an object of a different type from A, the type of the elements
in the original list. The compiler will infer the closest common supertype for A and the
parameter x. It will use that supertype as B. Here’s an example that prepends a different
type of object on a list:

// code-examples/TypeSystem/bounds/list-ab-script.scala

val languages = List("Scala", "Java", "Ruby", "C#", "C++", "Python")
val list = 3.14 :: languages
println(list)

The script prints the following output:

List(3.14, Scala, Java, Ruby, C#, C++, Python)

The new list of type List[Any], since Any is the closest common supertype of String
and Double. We started with a list of Strings, so A was String. Then we prepended a
Double, so the compiler inferred B to be Any, the closest (and only) common supertype.

The type signature B >: A says that B must be a supertype of A. There is
no analog in Java; B super A is not supported.

A Closer Look at Lists
Putting these features together, it’s worth looking at the implementation of the List
class in the Scala library. It illustrates several useful idioms for functional-style, im-
mutable data structures that are fully type-safe, yet flexible. We won’t show the entire
implementation, and we’ll omit the object List, many methods in the List class, and
the comments that are used to generate the Scaladocs. We encourage you to look at
the complete implementation of List, either by downloading the source distribution
from the Scala website or by browsing to the implementation through the Scaladocs
page for List. To avoid confusion with scala.List, we’ll use our own package and
name, AbbrevList:

// code-examples/TypeSystem/bounds/abbrev-list.scala
// Adapted from scala/List.scala in the Scala version 2.7.5 distribution.

package bounds.abbrevlist

sealed abstract class AbbrevList[+A] {

 def isEmpty: Boolean
 def head: A

Type Bounds | 261

http://www.scala-lang.org/

 def tail: AbbrevList[A]

 def ::[B >: A] (x: B): AbbrevList[B] = new bounds.abbrevlist.::(x, this)

 final def foreach(f: A => Unit) = {
 var these = this
 while (!these.isEmpty) {
 f(these.head)
 these = these.tail
 }
 }
}

// The empty AbbrevList.

case object AbbrevNil extends AbbrevList[Nothing] {
 override def isEmpty = true

 def head: Nothing =
 throw new NoSuchElementException("head of empty AbbrevList")

 def tail: AbbrevList[Nothing] =
 throw new NoSuchElementException("tail of empty AbbrevList")
}

// A non-empty AbbrevList characterized by a head and a tail.

final case class ::[B](private var hd: B,
 private[abbrevlist] var tl: AbbrevList[B]) extends AbbrevList[B] {

 override def isEmpty: Boolean = false
 def head : B = hd
 def tail : AbbrevList[B] = tl
}

Notice that while AbbrevList is immutable, the internal implementation uses mutable
variables, e.g., in forEach.

There are three types defined, forming a sealed hierarchy. AbbrevList (the analog of
List) is an abstract trait that declares three abstract methods: isEmpty, head, and tail.
It defines the “cons” operator (::) and a foreach method. All the other methods found
in List could be implemented with these methods, although some methods (like
List.length) use different implementation options for efficiency.

AbbrevNil is the analog of Nil. It is a case object that extends AbbrevList[Nothing]. It
returns true from isEmpty, and it throws an exception from head and tail. Because
AbbrevNil (and Nil) have essentially no state and behavior, having an object rather than
a class eliminates unnecessary copies, makes equals fast and simple, etc.

The :: class is the analog of scala.:: derived from List. It is declared final. Its argu-
ments are the element to become the head of the new list and an existing list, which will
be the tail of the new list. Note that these values are stored directly as fields. The

262 | Chapter 12: The Scala Type System

head and tail methods defined in AbbrevList are just reader methods for these fields.
There is no other data structure required to represent the list.

This is why prepending a new element to create a new list is an O(1) operation. The
List class also has a deprecated method + for creating a new list by appending an
element to the end of an existing list. That operation is O(N), where N is the length of
the list.

As you build up new lists by prepending elements to other lists, a nested hierarchy
of :: instances is created. Because the lists are immutable, there are no concerns about
corruption if one of the :: is changed in some way.

You can see this nesting if you print out a list, exploiting the toString method generated
because of the case keyword. Here is an example scala session:

$ scala -cp ...
Welcome to Scala version 2.7.5.final ...
Type in expressions to have them evaluated.
Type :help for more information.

scala> import bounds.abbrevlist._
import bounds.abbrevlist._

scala> 1 :: 2 :: 3 :: AbbrevNil
res1: bounds.abbrevlist.AbbrevList[Int] = ::(1,::(2,::(3,AbbrevNil)))

Note the output on the last line, which shows the nesting of (head,tail) elements.

For another example using similar approaches, this time for defining a stack, refer to
http://www.scala-lang.org/node/129.

Views and View Bounds
We’ve seen many examples where an implicit method was used to convert one type
to another—for example, to give the appearance of adding new methods to an existing
type, the so-called Pimp My Library pattern. We used this pattern extensively in Chap-
ter 11. You can also use function values that have the implicit keyword. We’ll see
examples of both shortly.

A view is an implicit value of function type that converts a type A to B. The function has
the type A => B or (=> A) => B (recall that (=> A) is a by-name parameter). An in-scope
implicit method with the same signature can also be used as a view, e.g., an implicit
method imported from an object. The term view conveys the sense of having a view
from one type (A) to another type (B).

A view is applied in two circumstances.

1. When a type A is used in a context where another type B is expected and there is a
view in scope that can convert A to B.

Type Bounds | 263

http://www.scala-lang.org/node/129

2. When a non-existent member m of a type A is referenced, but there is an in-scope
view that can convert A to a B that has the m member.

A common example of the second circumstance is the x -> y initialization syntax for
Maps, which triggers invocation of Predef.anyToArrowAssoc(x), as we discussed in “The
Predef Object” on page 145.

For an example of the first circumstance, Predef also defines many views for converting
between AnyVal types and for converting an AnyVal type to its corresponding
java.lang type. For example, double2Double converts a scala.Double to a
java.lang.Double.

A view bound in a type declaration is indicated with the <% keyword, e.g., A <% B. It
allows any type to be used for A if it can be converted to B using a view.

A method or class containing such a type parameter is treated as being equivalent to a
corresponding method or class with an extra argument list with one element, a view.
For example, consider the following method definition with a view bound:

def m [A <% B](arglist): R = ...

It is effectively the same as this method definition:

def m [A](arglist)(implicit viewAB: A => B): R = ...

(The implicit parameter viewAB would be given a unique name by the compiler.) Note
that we have an additional argument list, as opposed to an additional argument in the
existing argument list.

Why does this transformation work? We said that a valid A must have a view in scope
that transforms it to a B. The implicit viewAB argument will get invoked inside m to
convert all A instances to B instances where needed.

For this to work, there must be a view of the correct type in scope to satisfy the implicit
argument. You could also pass a function with the correct signature explicitly as the
second argument list when you call m. However, there is one situation where this won’t
work, which we’ll describe after our upcoming example.

For view bounds on types, the implicit view argument list would be added to the pri-
mary constructor.

Traits can’t have view bounds for their type parameters, because they
can’t have constructor argument lists.

To make this more concrete, let’s use view bounds to implement a LinkedList class
that uses Nodes, where each Node has a payload and a reference to the next Node in the
list. First, here is a hierarchy of Nodes:

264 | Chapter 12: The Scala Type System

// code-examples/TypeSystem/bounds/node.scala

package bounds

abstract trait Node[+A] {
 def payload: A
 def next: Node[A]
}

case class ::[+A](val payload: A, val next: Node[A]) extends Node[A] {
 override def toString =
 String.format("(%s :: %s)", payload.toString, next.toString)
}

object NilNode extends Node[Nothing] {
 def payload = throw new NoSuchElementException("No payload in NilNode")
 def next = throw new NoSuchElementException("No next in NilNode")

 override def toString = "*"
}

This type hierarchy is modeled after List and AbbrevList earlier. The :: type represents
intermediate nodes, and NilNode is analogous to Nil for Lists. We also override
toString to give us convenient output, which we’ll examine shortly.

The following script defines a LinkedList type that uses Nodes:

// code-examples/TypeSystem/bounds/view-bounds-script.scala

import bounds._

implicit def any2Node[A](x: A): Node[A] = bounds.::[A](x, NilNode)

case class LinkedList[A <% Node[A]](val head: Node[A]) {

 def ::[B >: A <% Node[B]](x: Node[B]) =
 LinkedList(bounds.::(x.payload, head))

 override def toString = head.toString
}

val list1 = LinkedList(1)
val list2 = 2 :: list1
val list3 = 3 :: list2
val list4 = "FOUR!" :: list3

println(list1)
println(list2)
println(list3)
println(list4)

It starts with a definition of a parameterized implicit method, any2Node, that converts
A to Node[A]. It will be used as the implicit view argument when we work with Linked
Lists. It creates a “leaf” node using a bounds.:: node with a reference to NilNode as the
“next” element in the list.

Type Bounds | 265

An alternative would be a function value that converts Any to Node[Any]:

implicit val any2Node = (a: Any) => bounds.::[Any](a, NilNode)

Otherwise, the script would run the same, except that some of the temporary lists would
be using Node[Any] rather than Node[Int].

Look at the declaration of LinkedList:

case class LinkedList[A <% Node[A]](val head: Node[A]) { ... }

It defines a view bound on A and takes a single argument, the head Node of the list (which
may be the head of a chain of Nodes). As we see later in the script, even though the
constructor expects a Node[A] argument, we can pass it an A and the implicit view
any2Node will get invoked. The beauty of this approach is that a client never has to worry
about proper construction of Nodes. The machinery handles that process automatically.

The class also has a “cons” operator:

def ::[B >: A <% Node[B]](x: Node[B]) = ...

The type parameter means ̀ `B is lower bounded by (i.e., is a supertype of) A, and B also
has a view bound of B <% Node[B]. As we saw for List and AbbrevList, the lower bound
allows us to prepend items of different types from the original A type. This method will
have its own implicit view argument, but our parameterized, implicit method,
any2Node, will be used for this argument, too.

We mentioned previously that if you don’t have a view in scope, you could pass a “non-
implicit” converter as the second argument list explicitly. This actually won’t work in
our example, because the constructor and :: method in LinkedList take Node[A] argu-
ments, but we call them with Ints and Strings. We would have to call them with
Node[Int] and Node[String] arguments explicitly. We would also have to invoke :: in
an ugly way—val list2 = list1.::(2)(converter), for example.

Let’s clarify the syntax a bit. When you see B >: A <% Node[B], it’s tempting to assume
that the <% should apply to A in this expression. It actually applies to B. The grammar
for type parameters, including view bounds, is the following (see [ScalaSpec2009]):

TypeParam ::= (id | â~@~X_â~@~Y) [TypeParamClause] [â~@~X>:â~@~Y Type] [â~@~X<:â~@~Y Type] [â~@~X<%â~@~Y Type]
TypeParamClause ::= â~@~X[â~@~Y VariantTypeParam {â~@~X,â~@~Y VariantTypeParam} â~@~X]â~@~Y
VariantTypeParam ::= [â~@~X+â~@~Y | â~@~Xâ~@~Y] TypeParam

So, yes, you can have some very complex, hierarchical types! In our :: method, the id is
B, the TypeParamClause is empty, and we have the >: A and <% Node[B] expressions on
the right. Again, all the bounds expressions apply to the first id (B) or the underscore
(_).

The underscore is used for existential types, which we’ll cover in “Existential
Types” on page 284.

Finally, we create a LinkedList in the script, prepend some values to create new lists,
and then print them out:

266 | Chapter 12: The Scala Type System

1 :: *
2 :: 1 :: *
3 :: 2 :: 1 :: *
FOUR! :: 3 :: 2 :: 1 :: *

To recap, the view bounds let us work with “payloads” of Ints and Strings while the
implementation handled the necessary conversions to Nodes.

View bounds are not used as often as upper and lower bounds, but they provide an
elegant mechanism for those times when automatic coercion from one type into another
is useful. As always, use implicits with caution; implicit conversions are far from ob-
vious when reading code and debugging mysterious behavior.

Nothing and Null
In “The Scala Type Hierarchy” on page 155, we mentioned that Null is a subtype of all
AnyRef types and Nothing is a subtype of all types, including Null.

Null is declared as a final trait (so it can’t be subtyped), and it has only one instance,
null. Since Null is a subtype of all AnyRef types, you can always assign null as an instance
of any of those types. Java, in contrast, simply treats null as a keyword with special
handling by the compiler. However, Java’s null actually behaves as if it were a subtype
of all reference types, just like Scala’s Null.

On the other hand, since Null is not a subtype of AnyVal, it is not possible to assign
null to an Int, for example, which is also consistent with the primitive semantics in Java.

Nothing is also a final trait, but it has no instances. However, it is still useful for
defining types. The best example is Nil, the empty list, which is a case object. It is of
type List[Nothing]. Because lists are covariant in Scala, as we saw earlier, this makes
Nil an instance of List[T], for any type T. We also exploited this feature in our Abbrev
List and LinkedList implementations.

Understanding Abstract Types
Besides parameterized types, which are common in statically typed, object-oriented
languages, Scala also supports abstract types, which are common in functional
languages. We introduced abstract types in “Abstract Types And Parameterized
Types” on page 47.

These two features overlap somewhat. Technically, you could implement almost all
the idioms that parameterized types support using abstract types and vice versa. How-
ever, in practice, each feature is a natural fit for different design problems.

Recall our version of Observer that uses abstract types in Chapter 6:

// code-examples/AdvOOP/observer/observer2.scala

package observer

Understanding Abstract Types | 267

trait AbstractSubject {
 type Observer

 private var observers = List[Observer]()
 def addObserver(observer:Observer) = observers ::= observer
 def notifyObservers = observers foreach (notify(_))

 def notify(observer: Observer): Unit
}

trait SubjectForReceiveUpdateObservers extends AbstractSubject {
 type Observer = { def receiveUpdate(subject: Any) }

 def notify(observer: Observer): Unit = observer.receiveUpdate(this)
}

trait SubjectForFunctionalObservers extends AbstractSubject {
 type Observer = (AbstractSubject) => Unit

 def notify(observer: Observer): Unit = observer(this)
}

AbstractSubject declares a type Observer with no type bounds. It is defined in the two
derived traits. In SubjectForReceiveUpdateObservers, it is defined to be a structural
type. In SubjectForFunctionalObservers, it is defined to be a function type. We’ll have
more to say about structural and function types later in this chapter.

We can also use type bounds when we declare or refine the declaration of abstract
types. We saw a simple example previously in “Type Projections” on page 279 where
we had a declaration type t <: AnyRef. That is, t had an upper type bound (superclass)
of AnyRef. AnyVal types weren’t allowed.

We can also have lower type bounds (subclasses), and we can use most of the value
types (see “Value Types” on page 275) in the bounds expressions. Here is an example
illustrating the most common options:

// code-examples/TypeSystem/abstracttypes/abs-type-examples-script.scala

trait exampleTrait {
 type t1 // Unconstrained
 type t2 >: t3 <: t1 // t2 must be a supertype of t3 and a subtype of t1
 type t3 <: t1 // t3 must be a subtype of t1
 type t4 // Unconstrained
 type t5 = List[t4] // List of t4, whatever t4 will eventually be...

 val v1: t1 // Can't initialize until t1 defined.
 val v3: t3 // etc.
 val v2: t2 // ...
 val v4: t4 // ...
 val v5: t5 // ...
}

trait T1 { val name1: String }

268 | Chapter 12: The Scala Type System

trait T2 extends T1 { val name2: String }
class C(val name1: String, val name2: String) extends T2

object example extends exampleTrait {
 type t1 = T1
 type t2 = T2
 type t3 = C
 type t4 = Int

 val v1 = new T1 { val name1 = "T1"}
 val v3 = new C("C1", "C2")
 val v2 = new T2 { val name1 = "T1"; val name2 = "T2" }
 val v4 = 10
 val v5 = List(1,2,3,4,5)
}

The comments explain most of the details. The relationships between t1, t2, and t3
have some interesting points. First, the declaration of t2 says that it must be “between”
t1 and t3. Whatever t1 becomes, it must be a super class of t2 (or equal to it), and t3
must be a subclass of t2 (or equal to it).

Remember from “Type Bounds” on page 259 that we are making a declaration of the
first type after the type keyword, t2, not the type in the middle, t3. The rest of
the expression is telling us the bounds of t2.

Consider the next line that declares t3 to be a subtype of t1. If you were to omit the
type bound, the compiler would throw an error, because t3 <: t1 is implied by the
previous declaration of t2. That doesn’t mean that you can leave out the declaration of
t3. It has to be there, but it also has to show a consistent type bound with the one
implied in the t2 declaration.

When we revisit the Observer Pattern in “Self-Type Annotations and Abstract Type
Members” on page 317, we’ll see another example of type bounds used on abstract
types. We’ll see a problem they can cause, along with an elegant solution.

Finally, abstract types don’t have variance annotations:

// code-examples/TypeSystem/abstracttypes/abs-type-variances-wont-compile.scala
// WON'T COMPILE

trait T1 { val name1: String }
trait T2 extends T1 { val name2: String }
class C(val name1: String, val name2: String) extends T2

trait T {
 type t: +T1 // ERROR, no +/- type variance annotations
 val v
}

Remember that the abstract types are members of the enclosing type, not type param-
eters, as for parameterized types. The enclosing type may have an inheritance relation-
ship with other types, but member types behave just like member methods and
variables. They don’t affect the inheritance relationships of their enclosing type. Like

Understanding Abstract Types | 269

other members, abstract types can be declared abstract or concrete. However, they can
also be refined in subtypes without being fully defined, unlike variables and methods.
Of course, instances can only be created when the abstract types are given concrete
definitions.

Parameterized Types Versus Abstract Types
When should you use parameterized types versus abstract types? Parameterized types
are the most natural fit for parameterized container types like List and Option. Consider
the declaration of Some from the standard library:

case final class Some[+A](val x : A) { ... }

If we tried to convert this to use abstract types, we might start with the following:

case final class Some(val x : ???) {
 type A
 ...
}

What should be the type of the field x? We can’t use A because it’s not in scope at the
point of the constructor argument. We could use Any, but that defeats the value of
having appropriately typed declarations.

If a type will have constructor arguments declared using a “placeholder” type that has
not yet been defined, then parameterized types are the only good solution (short of
using Any or AnyRef).

You can use abstract types as method arguments and return values within a function.
However, two problems can arise. First, you can run into problems with path-
dependent types (discussed in “Path-Dependent Types” on page 272), where the com-
piler thinks you are trying to use an incompatible type in a particular context, when in
fact they are paths to compatible types. Second, it’s awkward to express methods like
List.:: (“cons”) using abstract types where type changes (expansion in this case) can
occur:

class List[+A] {
 ...
 def ::[B >: A](x : B) : List[B] = new scala.::(x, this)
 ...
}

Also, if you want to express variance under inheritance that is tied to the type abstrac-
tions, then parameterized types with variance annotations make these behaviors obvi-
ous and explicit.

These limitations of abstract types really reflect the tension between object-oriented
inheritance and the origin of abstract types in pure functional programming type
systems, which don’t have inheritance. Parameterized types are more popular in object-
oriented languages because they handle inheritance more naturally in most
circumstances.

270 | Chapter 12: The Scala Type System

On the other hand, sometimes it’s useful to refer to a type abstraction as a member of
another type, as opposed to a parameter used to construct new types from a parame-
terized type. Refining an abstract type declaration through a series of enclosing type
refinements can be quite elegant:

trait T1 {
 type t
 val v: t
}
trait T2 extends T1 {
 type t <: SomeType1
}
trait T3 extends T2 {
 type t <: SomeType2 // where SomeType2 <: SomeType1
}
class C extends T3 {
 type t = Concrete // where Concrete <: SomeType2
 val v = new Concrete(...)
}
...

This example also shows that abstract types are often used to declare abstract variables
of the same type. Less frequently, they are used for method declarations.

When the abstract variables are eventually made concrete, they can either be defined
inside the type body, much as they were originally declared, or they can be initialized
through constructor arguments. Using constructor arguments lets the user decide on
the actual values, while initializing them in the body lets the type designer decide on
the appropriate value.

We used constructor arguments in the brief BulkReader example we presented in
“Abstract Types And Parameterized Types” on page 47:

// code-examples/TypeLessDoMore/abstract-types-script.scala

import java.io._

abstract class BulkReader {
 type In
 val source: In
 def read: String
}

class StringBulkReader(val source: String) extends BulkReader {
 type In = String
 def read = source
}

class FileBulkReader(val source: File) extends BulkReader {
 type In = File
 def read = {
 val in = new BufferedInputStream(new FileInputStream(source))
 val numBytes = in.available()
 val bytes = new Array[Byte](numBytes)

Understanding Abstract Types | 271

 in.read(bytes, 0, numBytes)
 new String(bytes)
 }
}

println(new StringBulkReader("Hello Scala!").read)
println(new FileBulkReader(new File("abstract-types-script.scala")).read)

If you come from an object-oriented background, you will naturally tend to use para-
meterized types more often than abstract types. The Scala standard library tends to
emphasize parameterized types, too. Still, you should learn the merits of abstract types
and use them when they make sense.

Path-Dependent Types
Languages that let you nest types provide ways to refer to those type paths. Scala pro-
vides a rich syntax for path-dependent types. Although you will probably use them
rarely, it’s useful to understand the basics, as compiler errors often contain type paths.

Consider the following example:

// code-examples/TypeSystem/typepaths/type-path-wont-compile.scala
// ERROR: Won't compile

trait Service {
 trait Logger {
 def log(message: String): Unit
 }
 val logger: Logger

 def run = {
 logger.log("Starting " + getClass.getSimpleName + ":")
 doRun
 }

 protected def doRun: Boolean
}

object MyService1 extends Service {
 class MyService1Logger extends Logger {
 def log(message: String) = println("1: "+message)
 }
 override val logger = new MyService1Logger
 def doRun = true // do some real work...
}

object MyService2 extends Service {
 override val logger = MyService1.logger // ERROR
 def doRun = true // do some real work...
}

272 | Chapter 12: The Scala Type System

If you compile this file, you get the following error:

...:27: error: error overriding value logger in trait Service of type \
 MyService2.Logger;
 value logger has incompatible type MyService1.MyService1Logger
 override val logger = MyService1.logger // ERROR
 ^
one error found

The error says that the logger value in MyService2 on line 25 has type MySer
vice2.Logger, even though it’s declared to be of type Logger in the parent Service trait.
Also, we’re trying to assign it a value of type MyService1.MyService1Logger.

These three types are different in Scala. Logger is nested in Service, which is the parent
of MyService1 and MyService2. In Scala, that means that the nested Logger type is unique
for each of the service types. The actual type is path-dependent.

In this case, the easiest solution is to move the declaration of Logger outside of
Service, thereby removing the path dependency. In other cases, it’s possible to qualify
the type so that it resolves to what you want.

There are several kinds of type paths.

C.this
For a class C, you can use C.this or this inside the body to refer to the current instance:

class C1 {
 var x = "1"
 def setX1(x:String) = this.x = x
 def setX2(x:String) = C1.this.x = x
}

Both setX1 and setX2 have the same effect, because C1.this is equivalent to this.

Inside a type body and outside a method definition, this refers to the type itself:

trait T1 {
 class C
 val c1 = new C
 val c2 = new this.C
}

The values c1 and c2 have the same type. The this in the expression this.C refers to
the trait T1.

C.super
You can refer specifically to the parent of a type with super:

class C2 extends C1
class C3 extends C2 {
 def setX3(x:String) = super.setX1(x)
 def setX4(x:String) = C3.super.setX1(x)

Path-Dependent Types | 273

 def setX5(x:String) = C3.super[C2].setX1(x)
}

C3.super is equivalent to super in this example. If you want to refer specifically to one
of the parents of a type, you can qualify super with the type, as shown in setX5. This is
particularly useful for the case where a type mixes in several traits, each of which over-
rides the same method. If you need access to one of the methods in a specific trait, you
can qualify super. However, this qualification can’t refer to “grandparent” types.

What if you are calling super in a class with several mixins and it extends another type?
To which type does super bind? Without the qualification, the rules of linearization
determine the target of super (see “Linearization of an Object’s Hierar-
chy” on page 159).

Just as for this, you can use super to refer to the parent type in a type body outside a
method:

class C4 {
 class C5
}
class C6 extends C4 {
 val c5a = new C5
 val c5b = new super.C5
}

Both c5a and c5b have the same type.

path.x
You can reach a nested type with a period-delimited path expression:

package P1 {
 object O1 {
 object O2 {
 val name = "name"
 }
 }
}
class C7 {
 val name = P1.O1.O2.name
}

C7.name uses a path to the name value in O2. The elements of a type path must be
stable, which roughly means that all elements in the path must be packages, singleton
objects, or type declarations that alias the same. The last element in the path can be a
class or trait. See [ScalaSpec2009] for the details:

object O3 {
 object O4 {
 type t = java.io.File
 class C
 trait T
 }

274 | Chapter 12: The Scala Type System

 class C2 {
 type t = Int
 }
}
class C8 {
 type t1 = O3.O4.t
 type t2 = O3.O4.C
 type t3 = O3.O4.T
// type t4 = O3.C2.t // ERROR: C2 is not a "value" in O3
}

Value Types
Because Scala is strongly and statically typed, every value has a type. The term value
types refers to all the different forms these types take, so it encompasses many forms
that are now familiar to us, plus a few new ones we haven’t encountered until now.

We are using the term value type here in the same way the term is used
by [ScalaSpec2009]. However, elsewhere in the book we also follow the
specification’s overloaded use of the term to refer to all subtypes of
AnyVal.

Type Designators
The conventional type IDs we commonly use are called type designators:

class Person // "Person" is a type designator
object O { type t } // "O" and "t" are type designators
...

They are actually a shorthand syntax for type projections, which we cover later.

Tuples
A value of the form (x1, ... xN) is a tuple value type.

Parameterized Types
When we create a type from a parameterized type, e.g., List[Int] and List[String]
from List[A], the types List[Int] and List[String] are value types, because they are
associated with declared values, e.g., val names = List[String]().

Annotated Types
When we annotate a type, e.g., @serializable @cloneable class C(val x:String), the
actual type includes the annotations.

Value Types | 275

Compound Types
A declaration of the form T1 extends T2 with T3 { R }, where R is the refinement (body),
declares a compound type. Any declarations in the refinement are part of the compound
type definition. The notion of compound types accounts for the fact that not all types
are named, since we can have anonymous types, such as this example scala session:

scala> val x = new T1 with T2 {
 type z = String
 val v: z = "Z"
}
x: java.lang.Object with T1 with T2{type z = String; def zv: this.z} = \
 $anon$1@9d9347d

Note that path-dependent type this.z in the output.

A particularly interesting case is a declaration of the form val x = new { R }, i.e.,
without any type IDs. This is equivalent to val x = new AnyRef { R }.

Infix Types
Some parameterized types take two type arguments, e.g., scala.Either[+A,+B]. Scala
allows you to declare instances of these types using an infix notation, e.g., a Either
b. Consider the following script that uses Either:

// code-examples/TypeSystem/valuetypes/infix-types-script.scala

def attempt(operation: => Boolean): Throwable Either Boolean = try {
 Right(operation)
} catch {
 case t: Throwable => Left(t)
}

println(attempt { throw new RuntimeException("Boo!") })
println(attempt { true })
println(attempt { false })

The attempt method will evaluate the call-by-name parameter operation and return its
Boolean result, wrapped in a Right, or any Throwable that is caught, wrapped in a
Left. The script produces this output:

Left(java.lang.RuntimeException: Boo!)
Right(true)
Right(false)

Notice the declared return value, Throwable Either Boolean. It is identical to
Either[Throwable, Boolean]. Recall from “The Scala Type Hierarchy” on page 155 that
when using this exception-handling idiom with Either, it is conventional to use Left
for the exception and Right for the normal return value.

276 | Chapter 12: The Scala Type System

Function Types
The functions we have been writing are also typed. (T1, T2, ... TN) => R is the type
for all functions that take N arguments and return a value of type R.

When there is only one argument, you can drop the parentheses: T => R. A function
that takes a call-by-name parameter (as discussed in Chapter 8) has the type (=>T) =>
R. We used a call-by-name argument in our attempt example in the previous section.

Recall that everything in Scala is an object, even functions. The Scala library defines
traits for each FunctionN, for N from 0 to 22, inclusive. Here, for example, is the version
2.7.5 source for scala.Function3, omitting most comments and a few other details that
don’t concern us now:

// From Scala version 2.7.5: scala.Function3 (excerpt).
package scala

trait Function3[-T1, -T2, -T3, +R] extends AnyRef {
 def apply(v1:T1, v2:T2, v3:T3): R
 override def toString() = "<function>"

 /** f(x1,x2,x3) == (f.curry)(x1)(x2)(x3)
 */
 def curry: T1 => T2 => T3 => R = {
 (x1: T1) => (x2: T2) => (x3: T3) => apply(x1,x2,x3)
 }
}

As we discussed in “Variance Under Inheritance” on page 251, the FunctionN traits are
contravariant in the type parameters for the arguments and covariant in the return type
parameter.

Recall that when you reference any object followed by an argument list, Scala calls the
apply method on the object. In this way, any object with an apply method can also be
considered a function, providing a nice symmetry with the object-oriented nature of
Scala.

When you define a function value, the compiler instantiates the appropriate
FunctionN object and uses your definition of the function as the body of apply:

// code-examples/TypeSystem/valuetypes/function-types-script.scala

val capitalizer = (s: String) => s.toUpperCase

val capitalizer2 = new Function1[String,String] {
 def apply(s: String) = s.toUpperCase
}

println(List("Programming", "Scala") map capitalizer)
println(List("Programming", "Scala") map capitalizer2)

The capitalizer and capitalizer2 function values are effectively the same, where the
latter mimics the compiler’s output.

Value Types | 277

We discussed the curry method previously in “Currying” on page 184. It returns a new
function with N argument lists, each of which has a single argument taken from the
original argument list of N arguments. Note that the same apply method is invoked:

// code-examples/TypeSystem/valuetypes/curried-function-script.scala

val f = (x: Double, y: Double, z: Double) => x * y / z
val fc = f.curry

val answer1 = f(2., 5., 4.)
val answer2 = fc(2.)(5.)(4.)
println(answer1 + " == " + answer2 + "? " + (answer1 == answer2))

val fc1 = fc(2.)
val fc2 = fc1(5.)
val answer3 = fc2(4.)
println(answer3 + " == " + answer2 + "? " + (answer3 == answer2))

This script produces the following output:

2.5 == 2.5? true
2.5 == 2.5? true

In the first part of the script, we define a Function3 value f that does Double arithmetic.
We create a new function value fc by currying f. Then we call both functions with the
same arguments and print out the results. As expected, they both produce the same
output. (There are no concerns about rounding errors in the comparison here; recall
that both functions call the same apply method, so they must return the same value.)

In the second part of the script, we exploit the feature of curried functions that we can
partially apply arguments, creating new functions, until we apply all the arguments.
The example also helps us make sense of the declaration of curry in Function3.

Functions are right-associative, so a type T1 => T2 => T3 => R is equivalent to T1 =>
(T2 => (T3 => R)). We see this in the script. In the statement val fc1 = fc(2.), we
call fc with just the first argument list (corresponding to T1 equals Double). It returns a
new function of type T2 => (T3 => R) or Double => (Double => Double), in our case.

Next, in val fc2 = fc1(5.), we supply the second (T2) argument, returning a new
function of type T3 => R, that is, Double => Double. Finally, in val answer3 = fc2(4.)
we supply the last argument to compute the value of type R, that is Double.

A type T1 => T2 => T3 => R is equivalent to T1 => (T2 => (T3 => R)).
When we call a function of this type with a value for T1, it returns a new
function of type T2 => (T3 => R), and so forth.

Finally, since functions are instances of traits, you can use the traits as parents of other
types. In the Scala library, Seq[+A] is a subclass of PartialFunction[Int,A], which is a
subclass of (Int) => A, i.e., Function1[Int,A].

278 | Chapter 12: The Scala Type System

Type Projections
Type projections are a way to refer to a type declaration nested in another type:

// code-examples/TypeSystem/valuetypes/type-projection-script.scala

trait T {
 type t <: AnyRef
}
class C1 extends T {
 type t = String
}
class C2 extends C1

val ic1: C1#t = "C1"
val ic2: C2#t = "C2"
println(ic1)
println(ic2)

Both C1#t and C2#t are String. You can also reference the abstract type T#t, but you
can’t use it in a declaration because it is abstract.

Singleton Types
If you have a value v of a subtype of AnyRef, including null, you can get its singleton
type using the expression v.type. These expressions can be used as types in declarations.
This feature is useful on rare occasions to work around the fact that types are path
dependent, which we discussed in “Path-Dependent Types” on page 272. In these cases
an object may have a path-dependent type that appears to be incompatible with another
path-dependent type, when in fact they are compatible. Using the v.type expression
retrieves the singleton type, a “unique” type that eliminates the path dependency. Two
values v1 and v2 may have different path-dependent types, but they could have the same
singleton type.

This example uses the singleton type for one value in a declaration of another:

class C {
 val x = "Cx"
}
val c = new C
val x: c.x.type = c.x

Self-Type Annotations
You can use this in a method to refer to the enclosing type, which is useful for refer-
encing a member of the type. Using this is not usually necessary for this purpose, but
it’s useful occasionally for disambiguating a reference when several values are in scope
with the same name. By default, the type of this is the same as the enclosing type, but
this is not really essential.

Self-Type Annotations | 279

Self-type annotations let you specify additional type expectations for this, and they can
be used to create aliases for this. Let’s consider the latter case first:

// code-examples/TypeSystem/selftype/this-alias-script.scala

class C1 { self =>
 def talk(message: String) = println("C1.talk: " + message)
 class C2 {
 class C3 {
 def talk(message: String) = self.talk("C3.talk: " + message)
 }
 val c3 = new C3
 }
 val c2 = new C2
}
val c1 = new C1
c1.talk("Hello")
c1.c2.c3.talk("World")

It prints the following:

C1.talk: Hello
C1.talk: C3.talk: World

We give the outer scope (C1) this the alias self, so we can easily refer to it in C3. We
could use self within any method inside the body of C1 or its nested types. Note that
the name self is arbitrary, but it is somewhat conventional. In fact, you could say this
=>, but it would be completely redundant.

If the self-type annotation has types in the annotation, we get some very different
benefits:

// code-examples/TypeSystem/selftype/selftype-script.scala

trait Persistence {
 def startPersistence: Unit
}

trait Midtier {
 def startMidtier: Unit
}

trait UI {
 def startUI: Unit
}

trait Database extends Persistence {
 def startPersistence = println("Starting Database")
}

trait ComputeCluster extends Midtier {
 def startMidtier = println("Starting ComputeCluster")
}

trait WebUI extends UI {
 def startUI = println("Starting WebUI")

280 | Chapter 12: The Scala Type System

}

trait App {
 self: Persistence with Midtier with UI =>

 def run = {
 startPersistence
 startMidtier
 startUI
 }
}

object MyApp extends App with Database with ComputeCluster with WebUI

MyApp.run

This script shows a schematic layout for an App (application) infrastructure supporting
several tiers/components, persistent storage, midtier, and UI. We’ll explore this ap-
proach to component design in more detail in Chapter 13.

For now, we just care about the role of self types. Each abstract trait declares a “start”
method that does the work of initializing the tier. (We’re ignoring issues like success
versus failure of startup, etc.) Each abstract tier is implemented by a corresponding
concrete trait (not a class, so we can use them as mixins). We have traits for database
persistence, some sort of computation cluster to do the heavy lifting for the business
logic, and a web-based UI.

The App trait wires the tiers together. For example, it does the work of starting the tiers
in the run method.

Note the self-type annotation, self: Persistence with Midtier with UI =>. It has two
practical effects:

1. The body of the trait can assume it is an instance of Persistence, Midtier, and UI,
so it can call methods defined in those types, whether or not they are actually
defined at this point. We’re doing just that in run.

2. The concrete type that mixes in this trait must also mix in these three other traits
or descendants of them.

In other words, the self type in App specifies dependencies on other components. These
dependencies are satisfied in MyApp, which mixes in the concrete traits for the three tiers.

We could have declared App using inheritance instead:

trait App with Persistence with Midtier with UI {

 def run = { ... }
}

This is effectively the same. As we said, the self-type annotation lets the App assume it
is of type Persistence, etc. That’s exactly what happens when you mix in a trait, too.

Self-Type Annotations | 281

Why, then, are self types useful if they appear to be equivalent to inheritance? There
are some theoretical reasons and a few special cases where self-type annotations offer
unique benefits. In practice, you could use inheritance for almost all cases. By conven-
tion, people use inheritance when they want to imply that a type behaves as (inherits
from) another type, and they use self-type annotations when they want to express a
dependency between a type and other types (see [McIver2009]).

In our case, we don’t really think of an App as being a UI, database, etc. We think of an
App as being composed of those things. Note that in most object-oriented languages,
you would express this compositional dependency with member fields, especially if
your language doesn’t support mixin composition, like Java. For example, you might
write App in Java this way:

// code-examples/TypeSystem/selftype/JavaApp.java

package selftype;

public abstract class JavaApp {
 public interface Persistence {
 public void startPersistence();
 }

 public interface Midtier {
 public void startMidtier();
 }

 public interface UI {
 public void startUI();
 }

 private Persistence persistence;
 private Midtier midtier;
 private UI ui;

 public JavaApp(Persistence persistence, Midtier midtier, UI ui) {
 this.persistence = persistence;
 this.midtier = midtier;
 this.ui = ui;
 }

 public void run() {
 persistence.startPersistence();
 midtier.startMidtier();
 ui.startUI();
 }
}

(We nested the component interfaces inside JavaApp to avoid creating separate files for
each one!) You can certainly write applications this way in Scala. However, the self-
type approach turns programmatic dependency resolution, i.e., passing dependencies
to constructors or setter methods at runtime, into declarative dependency resolution
at compile time, which catches errors earlier. Declarative programming, which is a

282 | Chapter 12: The Scala Type System

hallmark of functional programming, is generally more robust, succinct, and clear,
compared to imperative programming.

We will return to self-type annotations as a component composition model in Chap-
ter 13. See “Self-Type Annotations and Abstract Type Members” on page 317 and
“Dependency Injection in Scala: The Cake Pattern” on page 334.

Structural Types
You can think of structural types as a type-safe approach to duck typing, the popular
name for the way method resolution works in dynamically typed languages. In Ruby,
for example, when you write starFighter.shootWeapons, the runtime looks for a
shootWeapons method on the object referenced by starFighter. That method, if found,
might have been defined in the class used to instantiate starFighter or one of its parents
or “included” modules. The method might also have been added to the object using
the metaprogramming facility of Ruby. Finally, the object might override the catch-all
method_missing method and do something reasonable when the object receives the
shootWeapons “message.”

Scala doesn’t support this kind of method resolution, Instead, Scala allows you to
specify that an object must adhere to a certain structure: that it contains certain types,
fields, or methods, without concern for the actual type of the object. We first encoun-
tered structural types near the beginning of Chapter 4. Here is the example we saw
then, a variation of the Observer Pattern:

// code-examples/Traits/observer/observer.scala

package observer

trait Subject {
 type Observer = { def receiveUpdate(subject: Any) }

 private var observers = List[Observer]()
 def addObserver(observer:Observer) = observers ::= observer
 def notifyObservers = observers foreach (_.receiveUpdate(this))
}

The declaration type Observer = { def receiveUpdate(subject: Any) } says that any
valid observer must have the receiveUpdate method. It doesn’t matter what the actual
type is for a particular observer.

Structural types have the virtue of minimizing the interface between two things. In this
case, the coupling consists of only a single method signature, rather than a type, such
as a shared trait. A drawback of a structural type is that we still couple to a particular
name. If a name is arbitrary, we don’t really care about its name so much as its intent.
In our example of a single method, we can avoid coupling to the name using a function
object instead. In fact, we did this in “Overriding Abstract Types” on page 120.

Structural Types | 283

On the other hand, if the name is a universal convention in some sense, then coupling
to it has more merit. For example, foreach is very common name in the Scala library
with a particular meaning, so defining a structural type based on foreach might be better
for conveying intent to the user, rather than using an anonymous function of some kind.

Existential Types
Existential types are a way of abstracting over types. They let you “acknowledge” that
there is a type involved without specifying exactly what it is, usually because you don’t
know what it is and you don’t need that knowledge in the current context.

Existential types are particularly useful for interfacing to Java’s type system for three
cases:

• The type parameters of generics are “erased” at the byte code level (called type
erasure). For example, when a List[Int] is created, the Int type is not available in
the byte code.

• You might encounter “raw” types, such as pre-Java 5 libraries where collections
had no type parameters. (All type parameters are effectively Object.)

• When Java uses wildcards in generics to express variance behavior when the ge-
nerics are used, the actual type is unknown. (We discussed this earlier in “Variance
Under Inheritance” on page 251.)

Consider the case of pattern matching on List[A] objects. You might like to write code
like the following:

// code-examples/TypeSystem/existentials/type-erasure-wont-work.scala
// WARNINGS: Does not work as you might expect.

object ProcessList {
 def apply[B](list: List[B]) = list match {
 case lInt: List[Int] => // do something
 case lDouble: List[Double] => // do something
 case lString: List[String] => // do something
 case _ => // default behavior
 }
}

If you compile this with the -unchecked flag on the JVM, you’ll get warnings that the
type parameters like Int are unchecked, because of type erasure. Hence, we can’t dis-
tinguish between any of the list types shown.

The Manifests that we discussed previously won’t work either, because they can’t re-
cover the erased type of B.

We’ve already learned that the best we can do in pattern matching is to focus on the
fact that we have a list and not try to determine the “lost” type parameter for the list
instance. For type safety, we have to specify that a list has a parameter, but since we
don’t know what it is, we use the wildcard _ character for the type parameter, e.g.:

284 | Chapter 12: The Scala Type System

case l: List[_] => // do something "generic" with the list

When used in a type context like this, the List[_] is actually shorthand for the exis-
tential type, List[T] forSome { type T }. This is the most general case. We’re saying
the type parameter for the list could be any type. Table 12-2 lists some other examples
that demonstrate the use of type bounds.

Table 12-2. Existential type examples

Shorthand Full Description

List[_] List[T] forSome { type T } T can be any subtype of Any.

List[_ <:
scala.actors.AbstractActor]

List[T] forSome { type T <:
scala.actors.AbstractActor }

T can be any subtype of
AbstractActor.

List[_ >: MyFancyActor <:
scala.actors.AbstractActor]

List[T] forSome { type T >:
MyFancyActor <:
scala.actors.AbstractActor }

T can be any subtype of
AbstractActor up to and
including the subtype
MyFancyActor.

If you think about how Scala syntax for generics is mapped to Java syntax, you might
have noticed that an expression like java.util.List[_ <: scala.actors.Abstrac
tActor] is structurally similar to the Java variance expression java.util.List<? extends
scala.actors.AbstractActor>. In fact, they are the same declarations. Although we said
that variance behavior in Scala is defined at the declaration site, you can use existential
type expressions in Scala to define call-site variance behavior. It is not recommended,
for the reasons discussed previously, but you have that option.

You won’t see the forSome existential type syntax very often in Scala code, because
existential types exist primarily to support Java generics while preserving correctness
in Scala’s type system. Type inference hides the details from us in most contexts. When
working with Scala types, the other type constructs we have discussed in this chapter
are preferred to existential types.

Infinite Data Structures and Laziness
We described lazy values in Chapter 8. In functional languages that are lazy by default,
like Haskell, laziness makes it easy to support infinite data structures.

For example, consider the following Scala method fib that calculates the Fibonacci
number for n in the infinite Fibonacci sequence:

def fib(n: Int): Int = n match {
 case 0 | 1 => n
 case _ => fib(n-1) + fib(n-2)
}

If Scala were purely lazy, we could imagine a definition of the Fibonacci sequence like
the following and it wouldn’t create an infinite loop:

Infinite Data Structures and Laziness | 285

fibonacci_sequence = for (i <- 0 to infinity) yield fib(i)

Scala isn’t lazy by default (and there is no infinity value or keyword…), but the library
contains a Stream class that supports lazy evaluation and hence it can support infinite
data structures. We’ll show an implementation of the Fibonacci sequence in a moment.
First, here is a simpler example that uses streams to represent all positive integers, all
positive odd integers, and all positive even integers:

// code-examples/TypeSystem/lazy/lazy-ints-script.scala

def from(n: Int): Stream[Int] = Stream.cons(n, from(n+1))

lazy val ints = from(0)
lazy val odds = ints.filter(_ % 2 == 1)
lazy val evens = ints.filter(_ % 2 == 0)

odds.take(10).print
evens.take(10).print

It produces this output:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, Stream.empty
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, Stream.empty

The from method is recursive and never terminates! We use it to define the ints by
calling from(0). Streams.cons is an object with an apply method that is analogous to
the :: (“cons”) method on List. It returns a new stream with the first argument as the
head and the second argument, another stream, as the tail. The odds and evens infinite
streams are computed by filtering ints.

Once we have defined the streams, the take method returns a new stream of the fixed
size specified, 10 in this case. When we print this stream with the print method, it
prints the 10 elements followed by Stream.empty when it hits the end of the stream.

Returning to the Fibonacci sequence, there is a famous definition using infinite, lazy
sequences that exploits the zip operation (see, e.g., [Abelson1996]). Our discussion for
Scala is adapted from [Ortiz2007]:

// code-examples/TypeSystem/lazy/lazy-fibonacci-script.scala

lazy val fib: Stream[Int] =
 Stream.cons(0, Stream.cons(1, fib.zip(fib.tail).map(p => p._1 + p._2)))

fib.take(10).print

It produces this output:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, Stream.empty

How does this work? Like our iterative definition at the start of this section, we explicitly
specify the first two values, 0 and 1. The rest of the numbers are computed using zip,
exploiting the fact that fib(n) = fib(n-1) + fib(n-2), for n > 1.

286 | Chapter 12: The Scala Type System

The call fib.zip(fib.tail) creates a new stream of tuples with the elements of fib in
the first position of the tuple, and the elements of fib.tail in the second position of
the tuple. To get back to a single integer for each position in the stream, we map the
stream of tuples to a stream of Ints by adding the tuple elements. Here are the tuples
calculated:

(0,1), (1,1), (1,2), (2,3), (3,5), (5,8), (8,13), (13, 21), (21, 34), ...

Note that each second element is the next number in the Fibonacci sequence after the
first element in the tuple. Adding them we get the following:

1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Since we concatenate this stream after 0 and 1, we get the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Another lazy Scala type, albeit a finite one, is Range. Typically, you write literal ranges
such as 1 to 1000. Range is lazy, so very large ranges don’t consume too many resources.
However, this feature can lead to subtle problems unless you are careful, as documented
by [Smith2009b] and commenters. Using the example described there, consider this
function for returning a Seq of three random integers:

// code-examples/TypeSystem/lazy/lazy-range-danger-script.scala

def mkRandomInts() = {
 val randInts = for {
 i <- 1 to 3
 val rand = i + (new scala.util.Random).nextInt
 } yield rand
 randInts
}
val ints1 = mkRandomInts

println("Calling first on ints1 Seq:")
for (i <- 1 to 3) {
 println(ints1.first)
}

val ints2 = ints1.toList
println("Calling first on List created from ints1 Seq:")
for (i <- 1 to 3) {
 println(ints2.first)
}

Here is the output from one run. The actual values will vary from run to run:

Calling first on ints1 Seq:
-1532554511
-1532939260
-1532939260
Calling first on List created from ints1 Seq:
-1537171498
-1537171498
-1537171498

Infinite Data Structures and Laziness | 287

Calling first on the sequence does not always return the same value! The reason is
that the range at the beginning of the for comprehension effectively forces the whole
sequence to be lazy. Hence, it is reevaluated with each call to first, and the first value
in the sequence actually changes, since Random returns a different number each time (at
least, it will if there is a sufficient time delta between calls).

However, calling toList on the sequence forces it to evaluate the whole range and create
a strict list.

Avoid using ranges in for (...) yield x constructs, while for (...)
{...} alternatives are fine.

Finally, Scala version 2.8 will include a force method on all collections that will force
them to be strict.

Recap and What’s Next
It’s important to remember that you don’t have to master the intricacies of Scala’s rich
type system to use Scala effectively. As you use Scala more and more, mastering the
type system will help you create powerful, sophisticated libraries that accelerate your
productivity.

The [ScalaSpec2009] describes the type system in formal detail. Like any specification,
it can be difficult reading. The effort is worthwhile if you want a deep understanding
of the type system. There are also a multitude of papers on Scala’s type system. You
can find links to many of them on the official http://scala-lang.org website.

The next two chapters cover the pragmatics of application design and Scala’s devel-
opment tools and libraries.

288 | Chapter 12: The Scala Type System

http://scala-lang.org

CHAPTER 13

Application Design

In this chapter, we take a pragmatic look at developing applications in Scala. We discuss
a few language and API features that we haven’t covered before, examine common
design patterns and idioms, and revisit traits with an eye toward structuring our code
effectively.

Annotations
Like Java and .NET, Scala supports annotations for adding metadata to declarations.
Annotations are used by a variety of tools in typical enterprise and Internet applications.
For example, there are annotations that provide directives to the compiler, and some
Object-Relational Mapping (ORM) frameworks use annotations on types and type
members to indicate persistence mapping information. While some uses for annota-
tions in the Java and .NET worlds can be accomplished through other means in Scala,
annotations can be essential for interoperating with Java and .NET libraries that rely
heavily on them. Fortunately, Java and .NET annotations can be used in Scala code.

The interpretation of Scala annotations depends on the runtime environment. In this
section, we will focus on the JDK environment.

In Java, annotations are declared using special conventions, e.g., declaring annotations
with the @interface keyword instead of the class or interface keyword. Here is the
declaration of an annotation taken from a toolkit called Contract4J (see [Contract4J])
that uses annotations to support Design by Contract programming in Java (see also
“Better Design with Design By Contract” on page 340). Some of the comments have
been removed for clarity:

// code-examples/AppDesign/annotations/Pre.java

package org.contract4j5.contract;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

289

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.PARAMETER, ElementType.METHOD, ElementType.CONSTRUCTOR})
public @interface Pre {
 /**
 * The "value" is the test expression, which must evaluate to true or false.
 * It must be a valid expression in the scripting language you are using.
 */
 String value() default "";

 /**
 * An optional message to print with the standard message when the contract
 * fails.
 */
 String message() default "";
}

The @Pre annotation is used to specify “preconditions” that must be satisfied when
entering a method or constructor, or before using a parameter passed to a method or
constructor. The conditions are specified as a string that is actually a snippet of source
code that evaluates to true or false. The source languages supported for these snippets
are scripting languages like Groovy and JRuby. The name of the variable for this string,
value, is a conventional name for the most important field in the annotation.

The other field is an optional message to use when reporting failures.

The declaration has other annotations applied to it—for example, the @Retention an-
notation with the value RetentionPolicy.RUNTIME means that when @Pre is used, its
information will be retained in the class file for runtime use.

Here is a Scala example that uses @Pre and shows several ways to specify the value and
message parameters:

// code-examples/AppDesign/annotations/pre-example.scala

import org.contract4j5.contract._

class Person(
 @Pre("name != null && name.length() > 0")
 val name: String,
 @Pre{ val value = "age > 0", val message = "You're too young!" }
 val age: Int,
 @Pre("ssn != null")
 val ssn: SSN)

class SSN(
 @Pre("valid(ssn)") { val message = "Format must be NNN-NN-NNNN." }
 val ssn: String) {

 private def valid(value: String) =
 value.matches("""^\s*\d{3}-\d{2}-\d{4}\s*$""")
}

290 | Chapter 13: Application Design

In the Person class, the @Pre annotation on name has a simple string argument: the
“precondition” that users must satisfy when passing in a name. This value can’t be
null, and it can’t be of zero length. As in Java, if a single argument is given to the
annotation, it is assigned to the value field.

A similar @Pre annotation is used for the third argument, the ssn (Social Security num-
ber). In both cases, the message defaults to the empty string specified in the definition
of Pre.

The @Pre annotation for the age shows one way to specify values for more than one
field. Instead of parentheses, curly braces are used. The syntax for each field looks like
a val declaration, without any type information, since the types can always be inferred!
This syntax allows you to use the shorthand syntax for the value and still specify values
for other fields.

If Person were a Java class, this annotation expression would look iden-
tical, except there would be no val keywords and parentheses would be
used.

The @Pre annotation on the constructor parameter for the SSN class shows the al-
ternative syntax for specifying values for more than one field. The value field is specified
as before with a one-element parameter list. The message is initialized in a follow-on
block in curly braces.

Testing this code would require the Contract4J library, build setup, etc. We won’t cover
those steps here. Refer to [Contract4J] for more information.

Scala annotations don’t use a special declaration syntax. They are declared as normal
classes. This approach eliminates a “special case” in the language, but it also means
that some of the features provided by Java annotations aren’t supported, as we will see.
Here is an example annotation from the Scala library, SerialVersionUID (again with the
comments removed for clarity):

package scala

class SerialVersionUID(uid: Long) extends StaticAnnotation

The @SerialVersionUID annotation is applied to a class to define a globally unique ID
as a Long. When the annotation is used, the ID is specified as a constructor argument.
This annotation serves the same purpose as a static field named serialVersionUID in
a Java class. This is one example of a Scala annotation that maps to a “non-annotation”
construct in Java.

The parent of SerialVersionUID is the trait scala.StaticAnnotation, which is used as
the parent for all annotations that should be visible to the type checker, even across
compilation units. The parent class of scala.StaticAnnotation is scala.Annotation,
which is the parent of all Scala annotations.

Annotations | 291

Did you notice that there is no val on uid? Why isn’t uid a field? The reason is that the
annotation’s data is not intended for use by the program. Recall that it is metadata
designed for external tools to use, such as scalac. This also means that Scala annota-
tions have no way to define default values in version 2.7.X, as implicit arguments don’t
work. However, the new default arguments feature in version 2.8.0 may work. (It is
not yet implemented at the time of this writing.)

Like Java (and .NET) annotations, a Scala annotation clause applies to the definition
it precedes. You can have as many annotation clauses as you want, and the order in
which they appear is not significant.

Like Java annotations, Scala annotation clauses are written using the syntax
@MyAnnotation if the annotation constructor takes no parameters, or @MyAnnota
tion(arg1, .., argN) if the constructor takes parameters. The annotation must be a
subclass of scala.Annotation.

All the constructor parameters must be constant expressions, including strings, class
literals, Java enumerations, numerical expressions and one-dimensional arrays of the
same. However, the compiler also allows annotation clauses with other arguments,
such as boolean values and maps, as shown in this example:

// code-examples/AppDesign/annotations/anno-example.scala

import scala.StaticAnnotation

class Persist(tableName: String, params: Map[String,Any])
 extends StaticAnnotation

// Doesn't compile:
//@Persist("ACCOUNTS", Map("dbms" -> "MySql", "writeAutomatically" -> true))
@Persist("ACCOUNTS", Map(("dbms", "MySql"), ("writeAutomatically", true)))
class Account(val balance: Double)

Curiously, if you attempt to use the standard Map literal syntax that is shown in the
comments, you get a compilation error that the -> method doesn’t exist for String. The
implicit conversion to ArrowAssoc that we discussed in “The Predef Ob-
ject” on page 145 isn’t invoked. Instead, you have to use a list of Tuples, which
Map.apply actually expects.

Another child of scala.Annotation that is intended to be a parent of other annotations
is the trait scala.ClassfileAnnotation. It is supposed to be used for annotations that
should have runtime retention, i.e., the annotations should be visible in the class file
so they are available at runtime. However, actually using it with the JDK version of
Scala results in compiler errors like the following:

...: warning: implementation restriction: subclassing Classfile does not
make your annotation visible at runtime. If that is what
you want, you must write the annotation class in Java.
...

292 | Chapter 13: Application Design

Hence, if you want runtime visibility, you have to implement the annotation in Java.
This works fine, since you can use any Java annotation in Scala code. The Scala library
currently defines no annotations derived from ClassfileAnnotation, perhaps for obvi-
ous reasons.

Avoid ClassfileAnnotation. Implement annotations that require run-
time retention in Java instead.

For Scala version 2.7.X, another important limitation to keep in mind is that annota-
tions can’t be nested. This causes problems when using JPA annotations in Scala code,
for example, as discussed in [JPAScala]. However, Scala version 2.8 removes this
limitation.

Annotations can only be nested in Scala version 2.8.

Tables 13-1 and 13-2 describe all the annotations defined in the Scala library (adapted
and expanded from http://www.scala-lang.org/node/106). We start with the direct chil-
dren of Annotation, followed by the children of StaticAnnotation.

Table 13-1. Scala annotations derived from Annotation

Name Java equivalent Description

ClassfileAnnotation Annotate with @Retention
(RetentionPolicy.RUNTIME)

The parent trait for annotations that should be retained
in the class file for runtime access, but it doesn’t actually
work on the JDK!

BeanDescription BeanDescriptor (class) An annotation for JavaBean types or members that
associates a short description (provided as the anno-
tation argument) that will be included when gener-
ating bean information.

BeanDisplayName BeanDescriptor (class) An annotation for JavaBean types or members that
associates a name (provided as the annotation argu-
ment) that will be included when generating bean
information.

BeanInfo BeanInfo (class) A marker that indicates that a BeanInfo class should
be generated for the marked Scala class. A val
becomes a read-only property. A var becomes a read-
write property. A def becomes a method.

BeanInfoSkip N.A. A marker that indicates that bean information should
not be generated for the annotated member.

StaticAnnotation Static fields,
@Target(ElementType.TYPE)

The parent trait of annotations that should be visible
across compilation units and define “static” metadata.

Annotations | 293

http://www.scala-lang.org/node/106

Name Java equivalent Description

TypeConstraint N.A. An annotation trait that can be applied to other an-
notations that define constraints on a type, relying
only on information defined within the type itself, as
opposed to external context information where the
type is defined or used. The compiler can exploit this
restriction to rewrite the constraint. There are currently
no library annotations that use this trait.

unchecked N.A. A marker annotation for the selector in a match state-
ment (e.g., the x in x match {...}) that sup-
presses a compiler warning if the case clauses are not
“exhaustive.” You can still have a runtime MatchEr
ror occur if a value of x fails to match any of the
case clauses. See the upcoming example.

unsealed N.A. Deprecated, use @unchecked instead.

Table 13-2. Scala annotations derived from StaticAnnotation

Name Java equivalent Description

BeanProperty JavaBean convention A marker for a field (including a constructor argument with
the val or var keyword) that tells the compiler to generate
a JavaBean-style “getter” and “setter” method. The setter is
only generated for var declarations. See the discussion in
“JavaBean Properties” on page 374.

cloneable java.lang.Cloneable
(interface)

A class marker indicating that a class can be cloned.

cps N.A. (version 2.8) Generate byte code using continuation passing
style.

deprecated java.lang.Deprecated A marker for any definition indicating that the defined “item”
is obsolete. The compiler will issue a warning when the item
is used.

inline N.A. A method marker telling the compiler that it should try
“especially hard” to inline the method.

native native (keyword) A method marker indicating the method is implemented as
“native” code. The method body will not be generated by the
compiler, but usage of the method will be type checked.

noinline N.A. A method marker that prevents the compiler from inlining the
method, even when it appears to be safe to do so.

remote java.rmi.Remote
(interface)

A class marker indicating that the class can be invoked from a
remote JVM.

serializable java.io.Serializable
(interface)

A class marker indicating that the class can be serialized.

SerialVersionUID serialVersionUID static
field in a class

Defines a globally unique ID for serialization purposes. The
annotation’s constructor takes a Long argument for the UID.

294 | Chapter 13: Application Design

Name Java equivalent Description

switch N.A. (version 2.8) An annotation to be applied to a match expression,
e.g., (x: @switch) match {...}. When present, the
compiler will verify that the match has been compiled to a
table-based or lookup-based switch statement. If not, it will
issue an error if it instead compiles into a series of conditional
expressions, which are less efficient.

specialized N.A. (version 2.8) An annotation applied to type parameters in par-
ameterized types and methods. It tells the compiler to generate
optimized versions of the type or method for the AnyVal types
corresponding to platform primitive types. Optionally, you can
limit the AnyVal types for which specialized implementations
will be generated. See the upcoming discussion.

tailRec N.A. (version 2.8) A method annotation that tells the compiler to
verify that the method will be compiled with tail-call optimi-
zation. If it is present, the compiler will issue an error if the
method cannot be optimized into a loop. This happens, for
example, when the method is not private or final, when
it could be overridden, and when recursive invocations are not
true tail calls.

throws throws (keyword) Indicates which exceptions are thrown by the annotated
method. See the upcoming discussion.

transient transient (keyword) Marks a method as “transient.”

uncheckedStable N.A. A marker for a value that is assumed to be stable even though
its type is volatile (i.e., annotated with @volatile).

uncheckedVariance N.A. A marker for a type argument that is volatile, when it is used
in a parameterized type, to suppress variance checking.

volatile volatile (keyword,
for fields only)

A marker for an individual field or a whole type, which affects
all fields, indicating that the field may be modified by a separate
thread.

The annotations marked with “(version 2.8)” are only available in Scala version 2.8 or
later. Consider @tailrec, as used in the following example:

import scala.annotation.tailrec

@tailrec
def fib(i: Int): Int = i match {
 case _ if i <= 1 => i
 case _ => fib(i-1) + fib(i-2)
}
println(fib(5))

Note that fib, which calculates Fibonacci numbers, is recursive, but it isn’t tail-call
recursive, because the call to itself is not the very last thing that happens in the second
case clause. Rather, after calling itself twice, it does an addition. Hence, a tail-call op-
timization can’t be performed on this method. When the compiler sees the @tailrec

Annotations | 295

annotation, it throws an error if it can’t apply the tail-call optimization. Attempting to
run this script produces the following error:

... 4: error: could not optimize @tailrec annotated method
def fib(i: Int): Int = i match {
 ^
one error found

We can also use the same method to demonstrate the new @switch annotation available
in version 2.8:

import scala.annotation.switch

def fib(i: Int): Int = (i: @switch) match {
 case _ if i <= 1 => i
 case _ => fib(i-1) + fib(i-2)
}
println(fib(5))

This time we annotate the i in the match statement. This annotation causes the compiler
to raise an error if it can’t generate a switch construct in byte code from the cases in the
match statement. Switches are generally more efficient than conditional logic. Running
this script produces this output:

... 3: error: could not emit switch for @switch annotated match
def fib(i: Int): Int = (i: @switch) match {
 ^
one error found

Conditional blocks have to be generated instead. The reason a switch can’t be generated
is because of the condition guard clause we put in the first case clause, if i <= 1.

Let’s look at an example of @unchecked in use (adapted from the Scaladoc entry for
@unchecked). Consider the following code fragment:

...
def process(x: Option[int]) = x match {
 case Some(value) => ...
}
...

If you compile it, you will get the following warning:

...: warning: does not cover case {object None}
 def f(x: Option[int]) = x match {
 ^
one warning found

Normally, you would want to add a case for None. However, if you want to suppress
the warning message in situations like this, change the method as follows:

...
def process(x: Option[int]) = (x: @unchecked) match {
 case Some(value) => ...
}
...

296 | Chapter 13: Application Design

With the @unchecked annotation applied to x as shown, the warning will be suppressed.
However, if x is ever None, then a MatchError will be thrown.

The @specialized annotation is another optimization-related annotation added in
version 2.8. It is a pragmatic solution to a tradeoff between space efficiency and per-
formance. In Java and Scala, the implementation of a parameterized type or method is
generated at the point of the declaration (as we discussed in “Understanding Parame-
terized Types” on page 249). In contrast, in C++, a template is used to generate an
implementation for the actual type parameters where the template is used. The C++
approach has the advantage of allowing optimized implementations to be generated
for primitive types, while it has the disadvantage of resulting in code bloat from all the
instantiations of templates.

In JVM-related languages, the “on-demand” generation of implementations isn’t suit-
able, primarily because there is no “link” step as in compiled languages, where every
required instantiation of a template can be determined. This creates a dilemma. By
default, a Scala parameterized type or method will be translated to a single implemen-
tation assuming Any for the type parameters (in part due to type erasure at the byte code
level). Java generics work the same way. However, if a particular use of the type or
method uses one of the AnyVal types, say Int, then we get inefficient boxing and un-
boxing operations in the implementation.

The alternative would be to generate a separate implementation for every AnyVal cor-
responding to a primitive type, but this would lead to code bloat, especially since it
would be rare that an application would use all those implementations. So, we are faced
with a dilemma.

The @specialized annotation is a pragmatic compromise. It lets the user tell the com-
piler that runtime efficiency is more important than space efficiency, so the compiler
will generate the separate implementations for each primitive corresponding to an
AnyVal. Here is an example of how the annotation is used:

class SpecialCollection[@specialized +T](...) {
 ...
}

At the time of this writing, the implementation in the version 2.8 “nightly” build only
supports generation of specialized implementations for Int and Double. For the final
version 2.8 library, it is planned that the other AnyVal types will be supported. There
are also plans to allow the user to specify the types for which optimized implementa-
tions are generated so that unused implementations for the other AnyVals are avoided.
See the final 2.8 Scaladocs for details on the final feature set.

Another planned version 2.8 annotation is @cps, which stands for continuation passing
style. It will be a directive interpreted by a compiler plugin that will trigger generation
of continuation-based byte code for method invocation, rather than the default stack
frame byte code. The annotation will have no effect unless the corresponding scalac

Annotations | 297

plugin is used. Consult the release documentation for more information on this feature,
when it becomes available.

To understand the @throws annotation, it’s important to remember that Scala does not
have checked exceptions, in contrast with Java. There is also no throws clause available
for Scala method declarations. This is not a problem if a Scala method calls a Java
method that is declared to throw a checked exception. The exception is treated as
unchecked in Scala. However, suppose the Scala method in question doesn’t catch the
exception, but lets it pass through. What if this Scala method is called by other Java
code?

Let’s look at an example involving java.io.IOException, which is a checked exception.
The following Scala class prints out the contents of a java.io.File:

// code-examples/AppDesign/annotations/file-printer.scala

import java.io._

class FilePrinter(val file: File) {

 @throws(classOf[IOException])
 def print() = {
 var reader: LineNumberReader = null
 try {
 reader = new LineNumberReader(new FileReader(file))
 loop(reader)
 } finally {
 if (reader != null)
 reader.close
 }
 }

 private def loop(reader: LineNumberReader): Unit = {
 val line = reader.readLine()
 if (line != null) {
 format("%3d: %s\n", reader.getLineNumber, line)
 loop(reader)
 }
 }
}

Note the @throws annotation applied to the print method. The argument to the anno-
tation constructor is a single java.lang.Class[Any] object, in this case, classOf[IOExcep
tion]. The Java IO API methods used by print and the private method loop might
throw this exception.

By the way, notice that loop uses functional-style tail recursion, rather than a loop. No
variables were mutated during the production of this output! (Well, we don’t actually
know what’s happening inside the Java IO classes....)

298 | Chapter 13: Application Design

Here is a Java class that uses FilePrinter. It provides the main routine:

// code-examples/AppDesign/annotations/FilePrinterMain.java

import java.io.*;

public class FilePrinterMain {
 public static void main(String[] args) {
 for (String fileName: args) {
 try {
 File file = new File(fileName);
 new FilePrinter(file).print();
 } catch (IOException ioe) {
 System.err.println("IOException for file " + fileName);
 System.err.println(ioe.getMessage());
 }
 }
 }
}

These classes compile without error. You can try them out with the following command
(which assumes that FilePrinterMain.java is in the annotations directory, as in the
example code distribution):

scala -cp build FilePrinterMain annotations/FilePrinterMain.java

You should get the following output:

 1: import java.io.*;
 2:
 3: public class FilePrinterMain {
 4: public static void main(String[] args) {
 5: for (String fileName: args) {
 6: try {
 7: File file = new File(fileName);
 8: new FilePrinter(file).print();
 9: } catch (IOException ioe) {
10: System.err.println("IOException for file " + fileName);
11: System.err.println(ioe.getMessage());
12: }
13: }
14: }
15: }

Now, returning to the FilePrinter class, suppose you comment out the @throws line.
This file will continue to compile, but when you compile FilePrinterMain.java, you
will get the following error:

annotations/FilePrinterMain.java:9: exception java.io.IOException is never
thrown in body of corresponding try statement
 } catch (IOException ioe) {
 ^
1 error

Annotations | 299

Even though java.io.IOException may get thrown by FilePrinter, that information
isn’t in the byte code generated by scalac, so the analysis done by javac mistakenly
concludes that IOException is never thrown.

So, the purpose of @throws is to insert the information on thrown checked exceptions
into the byte code that javac will read.

In a mixed Java-Scala environment, consider adding the @throws
annotation for all your Scala methods that can throw Java checked ex-
ceptions. Eventually, some Java code will probably call one of those
methods.

Enumerations Versus Pattern Matching
Enumerations are a way of defining a finite set of constant values. They are a lightweight
alternative to case classes. You can reference the values directly, iterate through them,
index into them with integer indices, etc.

Just as for annotations, Scala’s form of enumerations are class-based, with a particular
set of idioms, rather than relying on special keywords for defining them, as is used for
enumerations in Java and .NET. However, you can also use enumerations defined in
those languages.

Scala enumerations are defined by subclassing the abstract scala.Enumeration class.
There are several ways to construct and use an enumeration. We’ll demonstrate one
idiom that most closely matches the Java and .NET forms you may already know.

Recall the HTTP methods scripts that we wrote in “Sealed Class Hierar-
chies” on page 151. We defined the set of HTTP 1.1 methods using a sealed case class
hierarchy:

// code-examples/ObjectSystem/sealed/http-script.scala

sealed abstract class HttpMethod()
case class Connect(body: String) extends HttpMethod
case class Delete (body: String) extends HttpMethod
case class Get (body: String) extends HttpMethod
case class Head (body: String) extends HttpMethod
case class Options(body: String) extends HttpMethod
case class Post (body: String) extends HttpMethod
case class Put (body: String) extends HttpMethod
case class Trace (body: String) extends HttpMethod

def handle (method: HttpMethod) = method match {
 case Connect (body) => println("connect: " + body)
 case Delete (body) => println("delete: " + body)
 case Get (body) => println("get: " + body)
 case Head (body) => println("head: " + body)
 case Options (body) => println("options: " + body)
 case Post (body) => println("post: " + body)

300 | Chapter 13: Application Design

 case Put (body) => println("put: " + body)
 case Trace (body) => println("trace: " + body)
}

val methods = List(
 Connect("connect body..."),
 Delete ("delete body..."),
 Get ("get body..."),
 Head ("head body..."),
 Options("options body..."),
 Post ("post body..."),
 Put ("put body..."),
 Trace ("trace body..."))

methods.foreach { method => handle(method) }

In that example, each method had a body attribute for the message body. We’ll assume
here that the body is handled through other means and we only care about identifying
the kind of HTTP method. So, here is a Scala Enumeration class for the HTTP 1.1
methods:

// code-examples/AppDesign/enumerations/http-enum-script.scala

object HttpMethod extends Enumeration {
 type Method = Value
 val Connect, Delete, Get, Head, Options, Post, Put, Trace = Value
}

import HttpMethod._

def handle (method: HttpMethod.Method) = method match {
 case Connect => println("Connect: " + method.id)
 case Delete => println("Delete: " + method.id)
 case Get => println("Get: " + method.id)
 case Head => println("Head: " + method.id)
 case Options => println("Options: " + method.id)
 case Post => println("Post: " + method.id)
 case Put => println("Put: " + method.id)
 case Trace => println("Trace: " + method.id)
}

HttpMethod foreach { method => handle(method) }
println(HttpMethod)

This script produces the following output:

Connect: 0
Delete: 1
Get: 2
Head: 3
Options: 4
Post: 5
Put: 6
Trace: 7
{Main$$anon1HttpMethod(0), Main$$anon1HttpMethod(1),
Main$$anon1HttpMethod(2), Main$$anon1HttpMethod(3),

Enumerations Versus Pattern Matching | 301

Main$$anon1HttpMethod(4), Main$$anon1HttpMethod(5),
Main$$anon1HttpMethod(6), Main$$anon1HttpMethod(7)}

(We wrapped the lines for the output between the {...}.) There are two uses of
Value in the definition of HttpMethod. The first usage is actually a reference to an abstract
class, Enumeration.Value, which encapsulates some useful operations for the “values”
in the enumeration. We define a new type, Method, that functions as an alias for
Value. We see it used in the type of the argument passed to the handle method, which
demonstrates HttpMethod in use. HttpMethod.Method is a more meaningful name to the
reader than the generic HttpMethod.Value. Note that one of the fields in Enumera
tion.Value is id, which we also use in handle.

The second use of Value is actually a call to a method. There is no namespace collision
between these two names. The line val Connect, Delete, Get, Head, Options, Post,
Put, Trace = Value defines the set of values for the enumeration. The Value method is
called for each one. It creates a new Enumeration.Value for each one and adds it to the
managed set of values.

In the code below the definition, we import the definitions in HttpMethod and we define
a handle method that pattern matches on HttpMethod.Method objects. It simply prints a
message for each value along with its id. Note that while the example has no “default”
case clause (e.g. case _ ⇒ ...), none is required in this case. However, the compiler
doesn’t actually know that all the possible values are covered, in contrast to a sealed
case class hierarchy. If you comment out one of the case statements in handle, you will
get no warnings, but you will get a MatchError.

When pattern matching on enumeration values, the compiler can’t tell
if the match is “exhaustive.”

You might wonder why we hardcoded strings like “Connect” in the println statements
in the case clauses. Can’t we get the name from the HttpMethod.Method object itself?
And why didn’t the output of println(HttpMethod) include those names, instead of the
ugly internal object names?

You are probably accustomed to using such names with Java or .NET enumerations.
Unfortunately, we can’t get those names from the values in the Scala enumeration, at
least given the way that we declared HttpMethod. However, there are two ways we can
change the implementation to get name strings. In the first approach, we pass the name
to Value when creating the fields:

// code-examples/AppDesign/enumerations/http-enum2-script.scala

object HttpMethod extends Enumeration {
 type Method = Value
 val Connect = Value("Connect")
 val Delete = Value("Delete")
 val Get = Value("Get")

302 | Chapter 13: Application Design

 val Head = Value("Head")
 val Options = Value("Options")
 val Post = Value("Post")
 val Put = Value("Put")
 val Trace = Value("Trace")
}

import HttpMethod._

def handle (method: HttpMethod.Method) = method match {
 case Connect => println(method + ": " + method.id)
 case Delete => println(method + ": " + method.id)
 case Get => println(method + ": " + method.id)
 case Head => println(method + ": " + method.id)
 case Options => println(method + ": " + method.id)
 case Post => println(method + ": " + method.id)
 case Put => println(method + ": " + method.id)
 case Trace => println(method + ": " + method.id)
}

HttpMethod foreach { method => handle(method) }
println(HttpMethod)

It is a bit redundant to have to use the same word twice in declarations like val Connect
= Value("Connect").

Running this script produces the following nicer output:

Connect: 0
Delete: 1
Get: 2
Head: 3
Options: 4
Post: 5
Put: 6
Trace: 7
{Connect, Delete, Get, Head, Options, Post, Put, Trace}

In the second approach, we pass the list of names to the Enumeration constructor:

// code-examples/AppDesign/enumerations/http-enum3-script.scala

object HttpMethod extends Enumeration(
 "Connect", "Delete", "Get", "Head", "Options", "Post", "Put", "Trace") {
 type Method = Value
 val Connect, Delete, Get, Head, Options, Post, Put, Trace = Value
}

import HttpMethod._

def handle (method: HttpMethod.Method) = method match {
 case Connect => println(method + ": " + method.id)
 case Delete => println(method + ": " + method.id)
 case Get => println(method + ": " + method.id)
 case Head => println(method + ": " + method.id)
 case Options => println(method + ": " + method.id)

Enumerations Versus Pattern Matching | 303

 case Post => println(method + ": " + method.id)
 case Put => println(method + ": " + method.id)
 case Trace => println(method + ": " + method.id)
}

HttpMethod foreach { method => handle(method) }
println(HttpMethod)

This script produces identical output. Note that we have a redundant list of name strings
and names of the vals. It is up to you to keep the items in the list and their order consistent
with the declared values! This version has fewer characters, but it is more error-prone.
Internally, Enumeration pairs the strings with the corresponding Value instances as they
are created.

The output when printing the whole HttpMethod object is better for either alternative
implementation. When the values have names, their toString returns the name. In fact,
our final two examples have become quite artificial because we now have identical
statements for each case clause! Of course, in a real implementation, you would handle
the different HTTP methods differently.

Thoughts On Annotations and Enumerations
For both annotations and enumerations, there are advantages and disadvantages to the
Scala approach, where we use regular class-based mechanisms, rather than inventing
custom keywords and syntax. The advantages include fewer special cases in the lan-
guage. Classes and traits are used in more or less the same ways they are used for
“normal” code. The disadvantages include the need to understand and use ad hoc
conventions that are not always as convenient to use as the custom syntax mechanisms
required in Java and .NET. Also, Scala’s implementations are not as full-featured.

So, should the Scala community relent and implement ad hoc, but more full-featured
mechanisms for annotations and enumerations? Maybe not. Scala is a more flexible
language than most languages. Many of the features provided by Java and .NET an-
notations and enumerations can be implemented in Scala by other means.

Some use cases for the more advanced features of Java annotations can be implemented
more elegantly with “normal” Scala code, as we will discuss in “Design Pat-
terns” on page 325. For enumerations, sealed case classes and pattern matching pro-
vide a more flexible solution, in many cases.

Enumerations Versus Case Classes and Pattern Matching
Let’s revisit the HTTP method script, which uses a sealed case class hierarchy versus
the version we wrote previously that uses an Enumeration. Since the enumeration ver-
sion doesn’t handle the message body, let’s write a modified version of the sealed case
class version that is closer to the enumeration version, i.e., it also doesn’t hold the
message body and it has name and id methods:

304 | Chapter 13: Application Design

// code-examples/AppDesign/enumerations/http-case-script.scala

sealed abstract class HttpMethod(val id: Int) {
 def name = getClass getSimpleName
 override def toString = name
}

case object Connect extends HttpMethod(0)
case object Delete extends HttpMethod(1)
case object Get extends HttpMethod(2)
case object Head extends HttpMethod(3)
case object Options extends HttpMethod(4)
case object Post extends HttpMethod(5)
case object Put extends HttpMethod(6)
case object Trace extends HttpMethod(7)

def handle (method: HttpMethod) = method match {
 case Connect => println(method + ": " + method.id)
 case Delete => println(method + ": " + method.id)
 case Get => println(method + ": " + method.id)
 case Head => println(method + ": " + method.id)
 case Options => println(method + ": " + method.id)
 case Post => println(method + ": " + method.id)
 case Put => println(method + ": " + method.id)
 case Trace => println(method + ": " + method.id)
}

List(Connect, Delete, Get, Head, Options, Post, Put, Trace) foreach {
 method => handle(method)
}

Note that we used case object for all the concrete subclasses, to have a true set of
constants. To mimic the enumeration id, we added a field explicitly, but now it’s up
to us to pass in valid, unique values! The handle methods in the two implementations
are nearly identical.

This script outputs the following:

Main$$anon1Connect$: 0
Main$$anon1Delete$: 1
Main$$anon1Get$: 2
Main$$anon1Head$: 3
Main$$anon1Options$: 4
Main$$anon1Post$: 5
Main$$anon1Put$: 6
Main$$anon1Trace$: 7

The object names are ugly, but we could parse the string and remove the substring we
really care about.

Both approaches support the concept of a finite and fixed set of values, as long as the
case class hierarchy is sealed. An additional advantage of a sealed case class hierarchy
is the fact that the compiler will warn you if pattern matching statements aren’t

Thoughts On Annotations and Enumerations | 305

exhaustive. Try removing one of the case clauses and you’ll get the usual warning. The
compiler can’t do this with enumerations, as we saw.

The enumeration format is more succinct, despite the name duplication we had to use,
and it also supports the ability to iterate through the values. We had to do that manually
in the case clause implementation.

The case class implementation naturally accommodates other fields, e.g., the body, as
in the original implementation, while enumerations can only accommodate constant
Values with associated names and IDs.

For cases where you need only a simple list of constants by name or ID
number, use enumerations. Be careful to follow the usage idioms. For
fixed sets of more complex, constant objects, use sealed case objects.

Using Nulls Versus Options
When we introduced Option in “Option, Some, and None: Avoiding
nulls” on page 41, we briefly discussed how it encourages avoiding null references in
your code, which Tony Hoare, who introduced the concept of null in 1965, called his
“billion dollar mistake” (see [Hoare2009]).

Scala has to support null, because null is supported on both the JVM and .NET and
other libraries use null. In fact, null is used by some Scala libraries.

What if null were not available? How would that change your designs? The Map API
offers some useful examples. Consider these two Map methods:

trait Map[A,+B] {
 ...
 def get(key: A) : Option[B]
 def getOrElse [B2 >: B](key : A, default : => B2) : B2 = ...
 ...
}

A map may not have a value for a particular key. Both of these methods avoid returning
null in that case. Concrete implementations of get in subclasses return a None if no
value exists for the key. Otherwise, they return a Some wrapping the value. The method
signature tells you that a value might not exist, and it forces you to handle that situation
gracefully:

val stateCapitals = Map("Alabama" -> "Montgomery", ...)
...

stateCapitals.get("North Hinterlandia") match {
 case None => println ("No such state!")
 case Some(x) => println(x)
}

306 | Chapter 13: Application Design

Similarly, getOrElse forces you to design defensively. You have to specify a default value
for when a key isn’t in the map. Note that the default value can actually be an instance
of a supertype relative to the map’s value type:

println(stateCapitals.getOrElse("North Hinterlandia", "No such state!"))

A lot of Java and .NET APIs allow null method arguments and can return null values.
You can write Scala wrappers around them to implement an appropriate strategy for
handling nulls.

For example, let’s revisit our previous file printing example from “Annota-
tions” on page 289. We’ll refactor our FilePrinter class and the Java driver into a
combined script. We’ll address two issues: 1) wrap LineNumberReader.readLine with a
method that returns an Option instead of null, and 2) wrap checked IOExceptions in
our own unchecked exception, called ScalaIOException:

// code-examples/AppDesign/options-nulls/file-printer-refactored-script.scala

import java.io._

class ScalaIOException(cause: Throwable) extends RuntimeException(cause)

class ScalaLineNumberReader(in: Reader) extends LineNumberReader(in) {
 def inputLine() = readLine() match {
 case null => None
 case line => Some(line)
 }
}

object ScalaLineNumberReader {
 def apply(file: File) = try {
 new ScalaLineNumberReader(new FileReader(file))
 } catch {
 case ex: IOException => throw new ScalaIOException(ex)
 }
}

class FilePrinter(val file: File) {
 def print() = {
 val reader = ScalaLineNumberReader(file)
 try {
 loop(reader)
 } finally {
 if (reader != null)
 reader.close
 }
 }

 private def loop(reader: ScalaLineNumberReader): Unit = {
 reader.inputLine() match {
 case None =>
 case Some(line) => {
 format("%3d: %s\n", reader.getLineNumber, line)
 loop(reader)

Using Nulls Versus Options | 307

 }
 }
 }
}

// Process the command-line arguments (file names):
args.foreach { fileName =>
 new FilePrinter(new File(fileName)).print();
}

The ScalaLineNumberReader class defines a new method inputLine that calls
LineNumberReader.readLine and pattern matches the result. If null, then None is re-
turned. Otherwise, the line is returned wrapped in a Some[String].

ScalaIOException is a subclass of RuntimeException, so it is unchecked. We use it to
wrap any IOExceptions thrown in ScalaLineNumberReader.apply.

The refactored FilePrinter class uses ScalaLineNumberReader.apply in its print
method. It uses ScalaLineNumberReader.inputLine in its loop method. While the orig-
inal version properly handled the case of LineNumberReader.readLine returning null,
now the user of ScalaLineNumberReader has no choice but to handle a None return value.

The script ends with a loop over the input arguments, which are stored automatically
in the args variable. Each argument is treated as a file name to be printed. The script
will print itself with the following command:

scala file-printer-refactored-script.scala file-printer-refactored-script.scala

Options and for Comprehensions
There is one other benefit of using Options with for comprehensions, automatic
removal of None elements from comprehensions, under most conditions (refer to [Pol-
lak2007] and [Spiewak2009c]). Consider this first version of a script that uses
Options in a for comprehension:

// code-examples/AppDesign/options-nulls/option-for-comp-v1-script.scala

case class User(userName: String, name: String, email: String, bio: String)

val newUserProfiles = List(
 Map("userName" -> "twitspam", "name" -> "Twit Spam"),
 Map("userName" -> "bucktrends", "name" -> "Buck Trends",
 "email" -> "thebuck@stops.he.re", "bio" -> "World's greatest bloviator"),
 Map("userName" -> "lonelygurl", "name" -> "Lonely Gurl",
 "bio" -> "Obviously fake..."),
 Map("userName" -> "deanwampler", "name" -> "Dean Wampler",
 "email" -> "dean@....com", "bio" -> "Scala passionista"),
 Map("userName" -> "al3x", "name" -> "Alex Payne",
 "email" -> "al3x@....com", "bio" -> "Twitter API genius"))

// Version #1

var validUsers = for {

308 | Chapter 13: Application Design

 user <- newUserProfiles
 if (user.contains("userName") && user.contains("name") && // #1
 user.contains("email") && user.contains("bio")) // #1
 userName <- user get "userName"
 name <- user get "name"
 email <- user get "email"
 bio <- user get "bio" }
 yield User(userName, name, email, bio)

validUsers.foreach (user => println(user))

Imagine this code is used in some sort of social networking site. New users submit
profile data, which is passed to this service in bulk for processing. For example, we
hardcoded a list of submitted profiles, where each profile data set is a map. The map
might have been copied from an HTTP session.

The service filters out incomplete profiles (missing fields), shown with the #1 com-
ments, and creates new user objects from the complete profiles.

Running the script prints out three new users from the five submitted profiles:

User(bucktrends,Buck Trends,thebuck@stops.he.re,World's greatest bloviator)
User(deanwampler,Dean Wampler,dean@....com,Scala passionista)
User(al3x,Alex Payne,al3x@....com,Twitter API genius)

Now, delete the two lines with the #1 comment:

...
var validUsers = for {
 user <- newUserProfiles
 userName <- user get "userName"
 name <- user get "name"
 email <- user get "email"
 bio <- user get "bio" }
 yield User(userName, name, email, bio)

validUsers.foreach (user => println(user))

Before you rerun the script, what do you expect to happen? Will it print five lines with
some fields empty (or containing other kinds of values)?

It prints the same thing! How did it do the filtering we wanted without the explicit
conditional?

The answer lies in the way that for comprehensions are implemented. Here are a couple
of simple for comprehensions followed by their translations (see [ScalaSpec2009]).
First, we’ll look at a single generator with a yield:

for (p1 <- e1) yield e2 // for comprehension

e1 map (case p1 => e2) // translation

Here’s the translation of a single generator followed by an arbitrary expression (which
could be several expressions in braces, etc.):

Using Nulls Versus Options | 309

for (p1 <- e1) e2 // for comprehension

e1 foreach (case p1 => e2) // translation

With more than one generator, map is replaced with flatMap in the yield expressions,
but foreach is unchanged:

for (p1 <- e1; p2 <- e2 ...) yield eN // for comprehension

e1 flatMap (case p1 => for (p2 <- e2 ...) yield eN) // translation

for (p1 <- e1; p2 <- e2 ...) eN // for comprehension

e1 foreach (case p1 => for (p2 <- e2 ...) eN) // translation

Note that the second through the Nth generators become nested for comprehensions
that need translating.

There are similar translations for conditional statements (which become calls to
filter) and val assignments. We won’t show them here, since our primary purpose is
to describe just enough of the implementation details so you can understand how
Options and for comprehensions work together. The additional details are described
in [ScalaSpec2009], with examples.

If you follow this translation process on our example, you get the following expansion:

var validUsers = newUserProfiles flatMap {
 case user => user.get("userName") flatMap {
 case userName => user.get("name") flatMap {
 case name => user.get("email") flatMap {
 case email => user.get("bio") map {
 case bio => User(name, userName, email, bio) // #1
 }
 }
 }
 }
}

Note that we have flatMap calls until the most nested case, where map is used
(flatMap and map behave equivalently in this case).

Now we can understand why the big conditional was unnecessary. Recall that user is
a Map and user.get("...") returns an Option, either None or Some(value). The key is the
behavior of flatMap defined on Option, which lets us treat Options like other collections.
Here is the definition of flatMap:

def flatMap[B](f: A => Option[B]): Option[B] =
 if (isEmpty) None else f(this.get)

If user.get("...") returns None, then flatMap simply returns None and never evaluates
the function literal. Hence, the nested iterations simply stop and never get to the line
marked with the comment #1, where the User is created.

The outermost flatMap is on the input List, newUserProfiles. On a multi-element
collection like this, the behavior of flatMap is similar to map, but it flattens the new

310 | Chapter 13: Application Design

collection and doesn’t require the resulting map to have the same number of elements
as the original collection, like map does.

Finally, recall from “Partial Functions” on page 183 that the case user => ...
statements, for example, cause the compiler to generate a PartialFunction to pass to
flatMap and map, so no corresponding foo match {...} style wrappers are necessary.

Using Options with for comprehensions eliminate the need for most
“null/empty” checks.

Exceptions and the Alternatives
If nulls are the “billion dollar mistake” as we discussed in “Option, Some, and None:
Avoiding nulls” on page 41, then what about exceptions? You can argue that nulls
should never occur and you can design a language and libraries that never use them.
However, exceptions have a legitimate place because they separate the concerns of nor-
mal program flow from “exceptional” program flow. The divide isn’t always clear-cut.
For example, if a user mistypes his username, is that normal or exceptional?

Another question is where should the exception be caught and handled? Java’s checked
exceptions were designed to document for the API user what exceptions might be
thrown by a method. The flaw was that it encouraged handling of the exception in ways
that are often suboptimal. If one method calls another method that might throw a
checked exception, the calling method is forced to either handle the exception or de-
clare that it also throws the exception. More often than not, the calling method is the
wrong place to handle the exception. It is too common for methods to simply “eat” an
exception that should really be passed up the stack and handled in a more appropriate
context. Otherwise, throws declarations are required up the stack of method calls. This
is not only tedious, but it pollutes the intermediate contexts with exception names that
often have no connection to the local context.

As we have seen, Scala doesn’t have checked exceptions. Any exception can propagate
to the point where it is most appropriate to handle it. However, design discipline is
required to implement handlers in the appropriate places for all exceptions for which
recovery is possible!

Every now and then, an argument erupts among developers in a particular language
community about whether or not it’s OK to use exceptions as a control-flow mechanism
for normal processing. Sometimes this use of exceptions is seen as a useful longjump or
non-local goto mechanism for exiting out of a deeply nested scope. One reason this
debate pops up is that this use of exceptions is sometimes more efficient than a more
“conventional” implementation.

Exceptions and the Alternatives | 311

For example, you might implement Iterable.foreach to blindly traverse a collection
and stop when it catches whatever exception indicates it went past the end of the
collection.

When it comes to application design, communicating intent is very important. Using
exceptions as a goto mechanism breaks the principle of least surprise. It will be rare that
the performance gain will justify the loss of clarity, so we encourage you to use excep-
tions only for truly “exceptional” conditions. Note that Ruby actually provides a non-
local goto-like mechanism. In Ruby the keywords throw and catch are actually reserved
for this purpose, while raise and rescue are the keywords for raising an exception and
handling it.

Whatever your view on the proper use of exceptions, when you design APIs, minimizing
the possibility of raising an exception will benefit your users. This is the flip side of an
exception handling strategy, preventing them in the first place. Option can help.

Consider two methods on Seq, first and firstOption:

trait Seq[+A] {
 ...
 def first : A = ...
 def firstOption : Option[A] = ...
 ...
}

The first method throws a Predef.UnsupportedOperationException if the sequence is
empty. Returning null in this case isn’t an option, because the sequence could have
null elements! In contrast, the firstOption method returns an Option, so it returns
None if the sequence is empty, which is unambiguous.

You could argue that the Seq API would be more robust if it only had a “first” method
that returned an Option. It’s useful to ask yourself, “How can I prevent the user from
ever failing?” When “failure” can’t be prevented, use Option or a similar construct to
document for the user that a failure mode is possible. Thinking in terms of valid state
transformations, the first method, while convenient, isn’t really valid for a sequence
in an empty state. Should the “first” methods not exist for this reason? This choice is
probably too draconian, but by returning Option from firstOption, the API commu-
nicates to the user that there are circumstances when the method can’t satisfy the re-
quest and it’s up to the user to recover gracefully. In this sense, firstOption treats an
empty sequence as a non-exceptional situation.

Recall that we saw another example of this decision tradeoff in “Option, Some, and
None: Avoiding nulls” on page 41. We discussed two methods on Option for retrieving
the value an instance wraps (when the instance is actually a Some). The get method
throws an exception if there is no value, i.e., the Option instance is actually None. The
other method, getOrElse, takes a second argument, a default value to return if the
Option is actually None. In this case, no exception is thrown.

312 | Chapter 13: Application Design

Of course, it is impossible to avoid all exceptions. Part of the original intent of checked
versus unchecked exceptions was to distinguish between potentially recoverable prob-
lems and catastrophic failures, like out-of-memory errors.

However, the alternative methods in Seq and Option show a way to “encourage” the
user of an API to consider the consequences of a possible failure, like asking for the
first element in an empty sequence. The user can specify the contingency in the event
that a failure occurs. Minimizing the possibility of exceptions will improve the robust-
ness of your Scala libraries and the applications that use them.

Scalable Abstractions
It has been a goal for some time in our industry to create reusable components. Un-
fortunately, there is little agreement on the meaning of the term component, nor on a
related term, module (which some people consider synonymous with component). Pro-
posed definitions usually start with assumptions about the platform, granularity, de-
ployment and configuration scenarios, versioning issues, etc. (see [Szyperski1998]).

We’ll avoid that discussion and use the term component informally to refer to a grouping
of types and packages that exposes coherent abstractions (preferably just one) for the
services it offers, that has minimal coupling to other components, and that is internally
cohesive.

All languages offer mechanisms for defining components, at least to some degree. Ob-
jects are the primary encapsulation mechanism in object-oriented languages. However,
objects alone aren’t enough, because we quickly find that objects naturally cluster to-
gether into more coarse-grained aggregates, especially as our applications grow. Gen-
erally speaking, an object isn’t necessarily a component, and a component may contain
many objects. Scala and Java offer packages for aggregating types. Ruby modules serve
a similar purpose, as do C# and C++ namespaces.

However, these packaging mechanisms still have limitations. A common problem is
that they don’t clearly define what is publicly visible outside the component boundary
and what is internal to the component. For example, in Java, any public type or public
method on a public type is visible outside the package boundary to every other com-
ponent. You can make types and methods “package private,” but then they are invisible
to other packages encapsulated in the component. Java doesn’t have a clear sense of
component boundaries.

Scala provides a number of mechanisms that improve this situation. We have seen many
of them already.

Scalable Abstractions | 313

Fine-Grained Visibility Rules
We saw in “Visibility Rules” on page 96 that Scala provides more fine-grained visibility
rules than most other languages. You can control the visibility of types and methods
outside type and package boundaries.

Consider the following example of a component in package encodedstring:

// code-examples/AppDesign/abstractions/encoded-string.scala

package encodedstring {

 trait EncodedString {
 protected[encodedstring] val string: String
 val separator: EncodedString.Separator.Delimiter

 override def toString = string

 def toTokens = string.split(separator.toString).toList
 }

 object EncodedString {
 object Separator extends Enumeration {
 type Delimiter = Value
 val COMMA = Value(",")
 val TAB = Value("\t")
 }

 def apply(s: String, sep: Separator.Delimiter) = sep match {
 case Separator.COMMA => impl.CSV(s)
 case Separator.TAB => impl.TSV(s)
 }

 def unapply(es: EncodedString) = Some(Pair(es.string, es.separator))
 }

 package impl {
 private[encodedstring] case class CSV(override val string: String)
 extends EncodedString {
 override val separator = EncodedString.Separator.COMMA
 }

 private[encodedstring] case class TSV(override val string: String)
 extends EncodedString {
 override val separator = EncodedString.Separator.TAB
 }
 }
}

This example encapsulates handling of strings encoding comma-separated values
(CSVs) or tab-separated values (TSVs). The encodedstring package exposes a trait
EncodedString that is visible to clients. The concrete classes implementing CSVs and
TSVs are declared private[encodedstring] in the encodedstring.impl package. The
trait defines two abstract val fields: one to hold the encoded string, which is protected

314 | Chapter 13: Application Design

from client access, and the other to hold the separator (e.g., a comma). Recall from
Chapter 6 that abstract fields, like abstract types and methods, must be initialized in
concrete instances. In this case, string will be defined through a concrete constructor,
and the separator is defined explicitly in the concrete classes, CSV and TSV.

The toString method on EncodedString prints the string as a “normal” string. By hiding
the string value and the concrete classes, we have complete freedom in how the string
is actually stored. For example, for extremely large strings, we might want to split them
on the delimiter and store the tokens in a data structure. This could save space if the
strings are large enough and we can share tokens between strings. Also, we might find
this storage useful for various searching, sorting, and other manipulation tasks. All
these implementation issues are transparent to the client.

The package also exposes an object with an Enumeration for the known separators, an
apply factory method to construct new encoded strings, and an unapply extractor
method to decompose the encoded string into its enclosed string and the delimiter. In
this case, the unapply method looks trivial, but if we stored the strings in a different
way, this method could transparently reconstitute the original string.

So, clients of this component only know about the EncodedString abstraction and the
enumeration representing the supported types of encoded strings. All the actual im-
plementation types and details are private to the encodedstring package. (We put them
in the same file for convenience, but normally you would kept them separate.) Hence,
the boundary is clear between the exposed abstractions and the internal implementa-
tion details.

The following script demonstrates the component in use:

// code-examples/AppDesign/abstractions/encoded-string-script.scala

import encodedstring._
import encodedstring.EncodedString._

def p(s: EncodedString) = {
 println("EncodedString: " + s)
 s.toTokens foreach (x => println("token: " + x))
}

val csv = EncodedString("Scala,is,great!", Separator.COMMA)
val tsv = EncodedString("Scala\tis\tgreat!", Separator.TAB)

p(csv)
p(tsv)

println("\nExtraction:")
List(csv, "ProgrammingScala", tsv, 3.14159) foreach {
 case EncodedString(str, delim) =>
 println("EncodedString: \"" + str + "\", delimiter: \"" + delim + "\"")
 case s: String => println("String: " + s)
 case x => println("Unknown Value: " + x)
}

Scalable Abstractions | 315

It produces the following output:

EncodedString: Scala,is,great!
token: Scala
token: is
token: great!
EncodedString: Scala is great!
token: Scala
token: is
token: great!

Extraction:
EncodedString: "Scala,is,great!", delimiter: ","
String: ProgrammingScala
EncodedString: "Scala is great!", delimiter: " "
Unknown Value: 3.14159

However, if we try to use the CSV class directly, for example, we get the following error:

scala> import encodedstring._
import encodedstring._

scala> val csv = impl.CSV("comma,separated,values")
<console>:6: error: object CSV cannot be accessed in package encodedstring.impl
 val csv = impl.CSV("comma,separated,values")
 ^

scala>

In this simple example, it wasn’t essential to make the concrete types private to the
component. However, we have a very minimal interface to clients of the component,
and we are free to modify the implementation as we see fit with little risk of forcing
client code modifications. A common cause of maintenance paralysis in mature appli-
cations is the presence of too many dependencies between concrete types, which be-
come difficult to modify since they force changes to client code. So, for larger, more
sophisticated components, this clear separation of abstraction from implementation
can keep the code maintainable and reusable for a long time.

Mixin Composition
We saw in Chapter 4 how traits promote mixin composition. A class can focus on its
primary domain, and other responsibilities can be implemented separately in traits.
When instances are constructed, classes and traits can be combined to compose the
full range of required behaviors.

For example, in “Overriding Abstract Types” on page 120, we discussed our second
version of the Observer Pattern:

// code-examples/AdvOOP/observer/observer2.scala

package observer

trait AbstractSubject {

316 | Chapter 13: Application Design

 type Observer

 private var observers = List[Observer]()
 def addObserver(observer:Observer) = observers ::= observer
 def notifyObservers = observers foreach (notify(_))

 def notify(observer: Observer): Unit
}

trait SubjectForReceiveUpdateObservers extends AbstractSubject {
 type Observer = { def receiveUpdate(subject: Any) }

 def notify(observer: Observer): Unit = observer.receiveUpdate(this)
}

trait SubjectForFunctionalObservers extends AbstractSubject {
 type Observer = (AbstractSubject) => Unit

 def notify(observer: Observer): Unit = observer(this)
}

We used this version to observe button “clicks” in a UI. Let’s revisit this implementation
and resolve a few limitations, using our next tool for scalable abstractions, self-type
annotations combined with abstract type members.

Self-Type Annotations and Abstract Type Members
There are a few things that are unsatisfying about the implementation of Abstract
Subject in our second version of the Observer Pattern. The first occurs in Subject
ForReceiveUpdateObservers, where the Observer type is defined to be the structural type
{ def receiveUpdate(subject: Any) }. It would be nice to narrow the type of
subject to something more specific than Any.

The second issue, which is really the same problem in a different form, occurs in
SubjectForFunctionalObservers, where the Observer type is defined to be the type
(AbstractSubject) => Unit. We would like the argument to the function to be some-
thing more specific than AbstractSubject. Perhaps this drawback wasn’t so evident
before, because our simple examples never needed to access Button state information
or methods.

In fact, we expect the actual types of the subject and observer to be specialized
covariantly. For example, when we’re observing Buttons, we expect our observers to
be specialized for Buttons, so they can access Button state and methods. This cova-
riant specialization is sometimes called family polymorphism (see [Odersky2005]). Let’s
fix our design to support this covariance.

To simplify the example, let’s focus on just the receiveUpdate form of the Observer,
which we implemented with SubjectForReceiveUpdateObservers before. Here is a re-
working of our pattern, loosely following an example in [Odersky2005]. (Note that the
Scala syntax has changed somewhat since that paper was written.)

Scalable Abstractions | 317

// code-examples/AppDesign/abstractions/observer3-wont-compile.scala
// WON'T COMPILE

package observer

abstract class SubjectObserver {
 type S <: Subject
 type O <: Observer

 trait Subject {
 private var observers = List[O]()
 def addObserver(observer: O) = observers ::= observer
 def notifyObservers = observers foreach (_.receiveUpdate(this)) // ERROR
 }

 trait Observer {
 def receiveUpdate(subject: S)
 }
}

We’ll explain the error in a minute. Note how the types S and O are declared. As we
saw in “Understanding Parameterized Types” on page 249, the expression type S <:
Subject defines an abstract type S where the only allowed concrete types will be sub-
types of Subject. The declaration of O is similar. To be clear, S and O are “placeholders”
at this point, while Subject and Observer are abstract traits defined in SubjectObserver.

By the way, declaring SubjectObserver as an abstract class versus a trait is somewhat
arbitrary. We’ll derive concrete objects from it shortly. We need SubjectObserver pri-
marily so we have a type to “hold” our abstract type members S and O.

However, if you attempt to compile this code as currently written, you get the following
error:

... 10: error: type mismatch;
 found : SubjectObserver.this.Subject
 required: SubjectObserver.this.S
 def notifyObservers = observers foreach (_.receiveUpdate(this))
 ^
one error found

In the nested Observer trait, receiveUpdate is expecting an instance of type S, but we
are passing it this, which is of type Subject. In other words, we are passing an instance
of a parent type of the type expected. One solution would be to change the signature
to just expect the parent type, Subject. That’s undesirable. We just mentioned that our
concrete observers need the more specific type, the actual concrete type we’ll eventually
define for S, so they can call methods on it. For example, when observing UI
CheckBoxes, the observers will want to read whether or not a box is checked. We don’t
want to force the observers to use unsafe casts.

We looked at composition using self-type annotations in “Self-Type Annota-
tions” on page 279. Let’s use this feature now to solve our current compilation problem.
Here is the same code again with a self-type annotation:

318 | Chapter 13: Application Design

// code-examples/AppDesign/abstractions/observer3.scala

package observer

abstract class SubjectObserver {
 type S <: Subject
 type O <: Observer

 trait Subject {
 self: S => // #1
 private var observers = List[O]()
 def addObserver(observer: O) = observers ::= observer
 def notifyObservers = observers foreach (_.receiveUpdate(self)) // #2
 }

 trait Observer {
 def receiveUpdate(subject: S)
 }
}

Comment #1 shows the self-type annotation, self: S =>. We can now use self as an
alias for this, but whenever it appears, the type will be assumed to be S, not Subject.
It is as if we’re telling Subject to impersonate another type, but in a type-safe way, as
we’ll see.

Actually, we could have used this instead of self in the annotation, but self is some-
what conventional. A different name also reminds us that we’re working with a different
type.

Are self-type annotations a safe thing to use? When an actual concrete
SubjectObserver is defined, S and O will be specified and type checking will be performed
to ensure that the concrete S and O are compatible with Subject and Observer. In this
case, because we also defined S to be a subtype of Subject and O to be a subtype of
Observer, any concrete types derived from Subject and Observer, respectively, will
work.

Comment #2 shows that we pass self instead of this to receiveUpdate.

Now that we have a generic implementation of the pattern, let’s specialize it for ob-
serving button clicks:

// code-examples/AppDesign/abstractions/button-observer3.scala

package ui
import observer._

object ButtonSubjectObserver extends SubjectObserver {
 type S = ObservableButton
 type O = ButtonObserver

 class ObservableButton(name: String) extends Button(name) with Subject {
 override def click() = {
 super.click()
 notifyObservers

Scalable Abstractions | 319

 }
 }

 trait ButtonObserver extends Observer {
 def receiveUpdate(button: ObservableButton)
 }
}

We declare an object ButtonSubjectObserver where we define S and O to be Observable
Button and ButtonObserver, respectively, both of which are defined in the object. We
use an object now so that we can refer to the nested types easily, as we’ll see shortly.

ObservableButton is a concrete class that overrides click to notify observers, similar to
our previous implementations in Chapter 4. However, ButtonObserver is still an ab-
stract trait, because receiveUpdate is not defined. Notice that the argument to
receiveUpdate is now an ObservableButton, the value assigned to S.

The final piece of the puzzle is to define a concrete observer. As before, we’ll count
button clicks. However, to emphasize the value of having the specific type of instance
passed to the observer, a Button in this case, we’ll enhance the observer to track clicks
for multiple buttons using a hash map with the button labels as the keys. No type casts
are required!

// code-examples/AppDesign/abstractions/button-click-observer3.scala

package ui
import observer._

class ButtonClickObserver extends ButtonSubjectObserver.ButtonObserver {
 val clicks = new scala.collection.mutable.HashMap[String,Int]()

 def receiveUpdate(button: ButtonSubjectObserver.ObservableButton) = {
 val count = clicks.getOrElse(button.label, 0) + 1
 clicks.update(button.label, count)
 }
}

Every time ButtonClickObserver.receiveUpdate is called, it fetches the current count
for the button, if any, and updates the map with an incremented count. Note that it is
now impossible to call receiveUpdate with a normal Button. We have to use an
ObservableButton. This restriction eliminates bugs where we don’t get the notifications
we expected. We also have access to any “enhanced” features that ObservableButton
may have.

Finally, here is a specification that exercises the code:

// code-examples/AppDesign/abstractions/button-observer3-spec.scala

package ui
import org.specs._
import observer._

object ButtonObserver3Spec extends Specification {

320 | Chapter 13: Application Design

 "An Observer counting button clicks" should {
 "see all clicks" in {
 val button1 = new ButtonSubjectObserver.ObservableButton("button1")
 val button2 = new ButtonSubjectObserver.ObservableButton("button2")
 val button3 = new ButtonSubjectObserver.ObservableButton("button3")
 val buttonObserver = new ButtonClickObserver
 button1.addObserver(buttonObserver)
 button2.addObserver(buttonObserver)
 button3.addObserver(buttonObserver)
 clickButton(button1, 1)
 clickButton(button2, 2)
 clickButton(button3, 3)
 buttonObserver.clicks("button1") mustEqual 1
 buttonObserver.clicks("button2") mustEqual 2
 buttonObserver.clicks("button3") mustEqual 3
 }
 }

 def clickButton(button: Button, nClicks: Int) =
 for (i <- 1 to nClicks)
 button.click()
}

We create three buttons and one observer for all of them. We then click the buttons
different numbers of times. Finally, we confirm that the clicks were properly counted
for each button.

We see again how abstract types combined with self-type annotations provide a reus-
able abstraction that is easy to extend in a type-safe way for particular needs. Even
though we defined a general protocol for observing an “event” after it happened, we
were able to define subtypes specific to Buttons without resorting to unsafe casts from
Subject abstractions.

The Scala compiler itself is implemented using these mechanisms (see [Oder-
sky2005]) to make it modular in useful ways. For example, it is relatively straightfor-
ward to implement compiler plugins.

We’ll revisit these idioms in “Dependency Injection in Scala: The Cake Pat-
tern” on page 334.

Effective Design of Traits
One of the reasons that many languages (like Java) do not implement multiple inheri-
tance is because of the problems observed with multiple inheritance in C++. One of
those problems is the so-called diamond of death, which is illustrated in Figure 13-1.

Effective Design of Traits | 321

Figure 13-1. Diamond of death in languages with multiple inheritance

In C++, each constructor for C will invoke a constructor for B1 and a constructor for
B2 (explicitly or implicitly). Each constructor for B1 and B2 will invoke a constructor for
A. Hence, in a naïve implementation of multiple inheritance, the fields of A, a1 and a2,
could be initialized twice and possibly initialized in an inconsistent way or there might
be two different A “pieces” in the C instance, one for B1 and one for B2! C++ has mech-
anisms to clarify what should happen, but it’s up to the developer to understand the
details and to do the correct thing.

Scala’s single inheritance and support for traits avoid these problems, while providing
the most important benefit of multiple inheritance: mixin composition. The order of
construction is unambiguous (see “Linearization of an Object’s Hierar-
chy” on page 159). Traits can’t have constructor argument lists, but Scala ensures that
their fields are properly initialized when instances are created, as we saw in “Con-
structing Traits” on page 86 and “Overriding Abstract and Concrete Fields in
Traits” on page 114. We saw another example of initializing vals in a trait in “Fine-
Grained Visibility Rules” on page 314. There we defined concrete classes that overrode
the definitions of the two abstract fields in the EncodedString trait.

So, Scala handles many potential issues that arise when mixing the contributions of
different traits into the set of possible states of an instance. Still, it’s important to con-
sider how the contributions of different traits interact with each other.

When considering the state of an instance, it is useful to consider the instance as pos-
sessing a state machine, where events (e.g., method calls and field writes) cause transi-
tions from one state to another. The set of all possible states form a space. You can
think of each field as contributing one dimension to this space.

For example, recall our VetoableClicks trait in “Stackable Traits” on page 82, where
button clicks were counted and additional clicks were vetoed after a certain number of
clicks occurred. Our simple Button class contributed only a label dimension, while

322 | Chapter 13: Application Design

VetoableClicks contributed a count dimension and a maxAllowed constant. Here is a
recap of these types, collected together into a single script that also exercises the code:

// code-examples/AppDesign/abstractions/vetoable-clicks1-script.scala

trait Clickable {
 def click()
}

class Widget
class Button(val label: String) extends Widget with Clickable {
 def click() = println("click!")
}

trait VetoableClicks extends Clickable {
 val maxAllowed = 1
 private var count = 0
 abstract override def click() = {
 if (count < maxAllowed) {
 count += 1
 super.click()
 }
 }
}

val button1 = new Button("click me!")
println("new Button(...)")
for (i <- 1 to 3) button1.click()

val button2 = new Button("click me!") with VetoableClicks
println("new Button(...) with VetoableClicks")
for (i <- 1 to 3) button2.click()

This script prints the following output:

new Button(...)
click!
click!
click!
new Button(...) with VetoableClicks
click!

Note that maxAllowed is a constant, but it can be overridden when instantiating each
instance. So, two instances could differ only by the value of maxAllowed. Therefore,
maxAllowed also contributes a dimension to the state, but with only one value per
instance!

So, for a button labeled “Submit,” with maxAllowed set to 3, and which has been clicked
twice (so count equals 2), its state can be represented by the tuple ("Submit", 2, 3).

In general, a single trait can either be stateless, i.e., it contributes no new dimensions
of state to the instance, or it can contribute orthogonal state dimensions to the instance,
i.e., dimensions that are independent of the state contributions from other traits and
the parent class. In the script, Clickable is trivially stateless (ignoring the button’s label),

Effective Design of Traits | 323

while VetoableClicks contributes maxAllowed and count. Traits with orthogonal state
often have orthogonal methods, too. For example, the Observer Pattern traits we used
in Chapter 4 contained methods for managing their lists of observers.

Independent of whether a trait contributes state dimensions, a trait can also modify the
possible values for a dimension contributed by a different trait or the parent class. To
see an example, let’s refactor the script to move the click count to the Clickable trait:

// code-examples/AppDesign/abstractions/vetoable-clicks2-script.scala

trait Clickable {
 private var clicks = 0
 def count = clicks

 def click() = { clicks += 1 }
}

class Widget
class Button(val label: String) extends Widget with Clickable {
 override def click() = {
 super.click()
 println("click!")
 }
}

trait VetoableClicks extends Clickable {
 val maxAllowed = 1
 abstract override def click() = {
 if (count < maxAllowed)
 super.click()
 }
}

val button1 = new Button("click me!")
println("new Button(...)")
for (i <- 1 to 3) button1.click()

val button2 = new Button("click me!") with VetoableClicks
println("new Button(...) with VetoableClicks")
for (i <- 1 to 3) button2.click()

This script prints the same output as before. Now Clickable contributes one state di-
mension for count (which is now a method that returns the value of the private
clicks field). VetoableClicks modifies this dimension by reducing the number of pos-
sible values for count from 0 to infinity down to just 0 and 1. Therefore, one trait affects
the behavior of another. We might say that VetoableClicks is invasive, because it
changes the behavior of other mixins.

Why is all this important? While the problems of multiple-inheritance are eliminated
in Scala’s model of single inheritance plus traits, care is required when mixing state and
behavior contributions to create well-behaved applications. For example, if you have
a test suite that Button passes, will a Button with VetoableClicks instance pass the same

324 | Chapter 13: Application Design

test suite? The suite won’t pass if it assumes that you can click a button as many times
as you want. There are different “specifications” for these two kinds of buttons. This
difference is expressed by the Liskov Substitution Principle (see [Martin2003]). An in-
stance of a Button with VetoableClicks won’t be substitutable in every situation where
a regular Button instance is used. This is a consequence of the invasive nature of
VetoableClicks.

When a trait adds only orthogonal state and behavior, without affecting the rest of the
state and behavior of the instance, it makes reuse and composition much easier, as well
as reducing the potential for bugs. The Observer Pattern implementations we have seen
are quite reusable. The only requirement for reuse is to provide some “glue” to adapt
the generic subject and observer traits to particular circumstances.

This does not mean that invasive mixins are bad, just that they should be used wisely.
The “vetoable events” pattern can be very useful.

Design Patterns
Design patterns have taken a beating lately. Critics dismiss them as workarounds for
missing language features. Indeed, some of the Gang of Four patterns (see
[GOF1995]) are not really needed in Scala, as native features provide better substitutes.
Other patterns are part of the language itself, so no special coding is needed. Of course,
patterns are frequently misused, but that’s not the fault of the patterns themselves.

We think the criticisms often overlook an important point: the distinction between an
idea and how it is implemented and used in a particular situation. Design patterns
document recurring, widely useful ideas. These ideas are part of the vocabulary that
software developers use to describe their designs.

Some common patterns are native language features in Scala, like singleton objects that
eliminate the need for a Singleton Pattern ([GOF1995]) implementation like you often
use in Java code.

The Iterator Pattern ([GOF1995]) is so pervasive in programming that most languages
include iteration mechanisms for any type that can be treated like a collection. For
example, in Scala you can iterate through the characters in a String with foreach:

"Programming Scala" foreach {c => println(c)}

Actually, in this case, an implicit conversion is invoked to convert the
java.lang.String to a RichString, which has the foreach method. That’s an example
of the pattern called Pimp My Library, which we saw in “Implicit Conver-
sions” on page 186.

Other common patterns have better alternatives in Scala. We’ll discuss a better alter-
native to the Visitor Pattern ([GOF1995]) in a moment.

Design Patterns | 325

Finally, still other patterns can be implemented in Scala and remain very useful. For
example, the Observer Pattern that we discussed earlier in this chapter and in Chap-
ter 4 is a very useful pattern for many design problems. It can be implemented very
elegantly using mixin composition.

We won’t discuss all the well known patterns, such as those in [GOF1995]. A number
of the GOF patterns are discussed at [ScalaWiki:Patterns], along with other patterns
that are somewhat specific to Scala. Instead, we’ll discuss a few illustrative examples.
We’ll start by discussing a replacement for the Visitor Pattern that uses functional
idioms and implicit conversions. Then we’ll discuss a powerful way of implementing
dependency injection in Scala using the Cake Pattern.

The Visitor Pattern: A Better Alternative
The Visitor Pattern solves the problem of adding a new operation to a class hierarchy
without editing the source code for the classes in the hierarchy. For a number of prac-
tical reasons, it may not be feasible or desirable to edit the hierarchy to support the new
operation.

Let’s look at an example of the pattern using the Shape class hierarchy we have used
previously. We’ll start with the case class version from “Case Classes” on page 136:

// code-examples/AdvOOP/shapes/shapes-case.scala

package shapes {
 case class Point(x: Double, y: Double)

 abstract class Shape() {
 def draw(): Unit
 }

 case class Circle(center: Point, radius: Double) extends Shape() {
 def draw() = println("Circle.draw: " + this)
 }

 case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape() {
 def draw() = println("Rectangle.draw: " + this)
 }

 case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape() {
 def draw() = println("Triangle.draw: " + this)
 }
}

Suppose we don’t want the draw method in the classes. This is a reasonable design
choice, since the drawing method will be highly dependent on the particular context
of use, such as details of the graphics libraries on the platforms the application will run
on. For greater reusability, we would like drawing to be an operation we decouple from
the shapes themselves.

326 | Chapter 13: Application Design

First, we refactor the Shape hierarchy to support the Visitor Pattern, following the ex-
ample in [GOF1995]:

// code-examples/AppDesign/patterns/shapes-visitor.scala

package shapes {
 trait ShapeVisitor {
 def visit(circle: Circle): Unit
 def visit(rect: Rectangle): Unit
 def visit(tri: Triangle): Unit
 }

 case class Point(x: Double, y: Double)

 sealed abstract class Shape() {
 def accept(visitor: ShapeVisitor): Unit
 }

 case class Circle(center: Point, radius: Double) extends Shape() {
 def accept(visitor: ShapeVisitor) = visitor.visit(this)
 }

 case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape() {
 def accept(visitor: ShapeVisitor) = visitor.visit(this)
 }

 case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape() {
 def accept(visitor: ShapeVisitor) = visitor.visit(this)
 }
}

We define a ShapeVisitor trait, which has one method for each concrete class in the
hierarchy, e.g., visit(circle: Circle). Each such method takes one parameter of the
corresponding type to visit. Concrete derived classes will implement each method to
do the appropriate operation for the particular type passed in.

The Visitor Pattern requires a one-time modification to the class hierarchy. An over-
ridden method named accept must be added, which takes a Visitor parameter. This
method must be overridden for each class. It calls the corresponding method defined
on the visitor instance, passing this as the argument.

Finally, note that we declared Shape to be sealed. It won’t help us prevent some bugs
in the Visitor Pattern implementation, but it will prove useful shortly.

Here is a concrete visitor that supports our original draw operation:

// code-examples/AppDesign/patterns/shapes-drawing-visitor.scala

package shapes {
 class ShapeDrawingVisitor extends ShapeVisitor {
 def visit(circle: Circle): Unit =
 println("Circle.draw: " + circle)

Design Patterns | 327

 def visit(rect: Rectangle): Unit =
 println("Rectangle.draw: " + rect)

 def visit(tri: Triangle): Unit =
 println("Triangle.draw: " + tri)
 }
}

For each visit method, it “draws” the Shape instance appropriately. Finally, here is a
script that exercises the code:

// code-examples/AppDesign/patterns/shapes-drawing-visitor-script.scala

import shapes._

val p00 = Point(0.0, 0.0)
val p10 = Point(1.0, 0.0)
val p01 = Point(0.0, 1.0)

val list = List(Circle(p00, 5.0),
 Rectangle(p00, 2.0, 3.0),
 Triangle(p00, p10, p01))

val shapesDrawer = new ShapeDrawingVisitor
list foreach { _.accept(shapesDrawer) }

It produces the following output:

Circle.draw: Circle(Point(0.0,0.0),5.0)
Rectangle.draw: Rectangle(Point(0.0,0.0),2.0,3.0)
Triangle.draw: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0))

Visitor has been criticized for being somewhat inelegant and for breaking the Open-
Closed Principle (OCP; see [Martin2003]), because if the hierarchy changes, you are
forced to edit (and test and redeploy) all the visitors for that hierarchy. Note that every
ShapeVisitor trait has methods that hardcode information about every Shape derived
type. These kinds of changes are also error-prone.

In languages with “open types,” like Ruby, an alternative to the Visitor Pattern is to
create a new source file that reopens all the types in the hierarchy and inserts an ap-
propriate method implementation in each one. No modifications to the original source
code are required.

Scala does not support open types, of course, but it offers a few alternatives. The first
approach we’ll discuss combines pattern matching with implicit conversions. Let’s be-
gin by refactoring the ShapeVisitor code to remove the Visitor Pattern logic:

// code-examples/AppDesign/patterns/shapes.scala

package shapes2 {
 case class Point(x: Double, y: Double)

 sealed abstract class Shape()

 case class Circle(center: Point, radius: Double) extends Shape()

328 | Chapter 13: Application Design

 case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape()

 case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape()
}

If we would like to invoke draw as a method on any Shape, then we will have to use an
implicit conversion to a wrapper class with the draw method:

// code-examples/AppDesign/patterns/shapes-drawing-implicit.scala

package shapes2 {
 class ShapeDrawer(val shape: Shape) {
 def draw = shape match {
 case c: Circle => println("Circle.draw: " + c)
 case r: Rectangle => println("Rectangle.draw: " + r)
 case t: Triangle => println("Triangle.draw: " + t)
 }
 }

 object ShapeDrawer {
 implicit def shape2ShapeDrawer(shape: Shape) = new ShapeDrawer(shape)
 }
}

Instances of ShapeDrawer hold a Shape object. When draw is called, the shape is pattern
matched based on its type to determine the appropriate way to draw it.

A companion object declares an implicit conversion that wraps a Shape in a ShapeDrawer.

This script exercises the code:

// code-examples/AppDesign/patterns/shapes-drawing-implicit-script.scala

import shapes2._

val p00 = Point(0.0, 0.0)
val p10 = Point(1.0, 0.0)
val p01 = Point(0.0, 1.0)

val list = List(Circle(p00, 5.0),
 Rectangle(p00, 2.0, 3.0),
 Triangle(p00, p10, p01))

import shapes2.ShapeDrawer._

list foreach { _.draw }

It produces the same output as the example using the Visitor Pattern.

This implementation of ShapeDrawer has some similarities with the Visitor Pattern, but
it is more concise, elegant, and requires no code modifications to the original Shape
hierarchy.

Design Patterns | 329

Technically, the implementation has the same OCP issue as the Visitor Pattern. Chang-
ing the Shape hierarchy requires a change to the pattern matching expression. However,
the required changes are isolated to one place and they are more succinct. In fact, all
the logic for drawing is now contained in one place, rather than separated into draw
methods in each Shape class and potentially scattered across different files. Note that
because we sealed the hierarchy, a compilation error in draw will occur if we forget to
change it when the hierarchy changes.

If we don’t like the pattern matching in the draw method, we could implement a sep-
arate “drawer” class and a separate implicit conversion for each Shape class. That would
allow us to keep each shape drawing operation in a separate file, for modularity, with
the drawback of more code and files to manage.

If, on the other hand, we don’t care about using the object-oriented shape.draw syntax,
we could eliminate the implicit conversion and do the same pattern matching that is
done in ShapeDrawer.draw. This approach could be simpler, especially when the extra
behavior can be isolated to one place. Indeed, this approach would be a conventional
functional approach, as illustrated in the following script:

// code-examples/AppDesign/patterns/shapes-drawing-pattern-script.scala

import shapes2._

val p00 = Point(0.0, 0.0)
val p10 = Point(1.0, 0.0)
val p01 = Point(0.0, 1.0)

val list = List(Circle(p00, 5.0),
 Rectangle(p00, 2.0, 3.0),
 Triangle(p00, p10, p01))

val drawText = (shape:Shape) => shape match {
 case circle: Circle => println("Circle.draw: " + circle)
 case rect: Rectangle => println("Rectangle.draw: " + rect)
 case tri: Triangle => println("Triangle.draw: " + tri)
}

def pointToXML(point: Point) =
 "<point><x>%.1f</x><y>%.1f</y></point>".format(point.x, point.y)

val drawXML = (shape:Shape) => shape match {
 case circle: Circle => {
 println("<circle>")
 println(" <center>" + pointToXML(circle.center) + "</center>")
 println(" <radius>" + circle.radius + "</radius>")
 println("</circle>")
 }
 case rect: Rectangle => {
 println("<rectangle>")
 println(" <lower-left>" + pointToXML(rect.lowerLeft) + "</lower-left>")
 println(" <height>" + rect.height + "</height>")
 println(" <width>" + rect.width + "</width>")

330 | Chapter 13: Application Design

 println("</rectangle>")
 }
 case tri: Triangle => {
 println("<triangle>")
 println(" <point1>" + pointToXML(tri.point1) + "</point1>")
 println(" <point2>" + pointToXML(tri.point2) + "</point2>")
 println(" <point3>" + pointToXML(tri.point3) + "</point3>")
 println("</triangle>")
 }
}

list foreach (drawText)
println("")
list foreach (drawXML)

We define two function values and assign them to variables, drawText and drawXML,
respectively. Each drawX function takes an input Shape, pattern matches it to the correct
type, and “draws” it appropriately. We also define a helper method to convert a
Point to XML in the format we want.

Finally, we loop through the list of shapes twice. The first time, we pass drawText as
the argument to foreach. The second time, we pass drawXML. Running this script re-
produces the previous results for “text” output, followed by new XML output:

Circle.draw: Circle(Point(0.0,0.0),5.0)
Rectangle.draw: Rectangle(Point(0.0,0.0),2.0,3.0)
Triangle.draw: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0))

<circle>
 <center><point><x>0.0</x><y>0.0</y></point></center>
 <radius>5.0</radius>
</circle>
<rectangle>
 <lower-left><point><x>0.0</x><y>0.0</y></point></lower-left>
 <height>2.0</height>
 <width>3.0</width>
</rectangle>
<triangle>
 <point1><point><x>0.0</x><y>0.0</y></point></point1>
 <point2><point><x>1.0</x><y>0.0</y></point></point2>
 <point3><point><x>0.0</x><y>1.0</y></point></point3>
</triangle>

Any of these idioms provides a powerful way to add additional, special-purpose func-
tionality that may not be needed “everywhere” in the application. It’s a great way to
remove methods from objects that don’t absolutely have to be there.

A drawing application should only need to know how to do input and output of shapes
in one place, whether it is serializing shapes to a textual format for storage or rendering
shapes to the screen. We can separate the drawing “concern” from the rest of the
functionality for shapes, and we can isolate the logic for drawing, all without modifying
the Shape hierarchy or any of the places where it is used in the application. The Visitor

Design Patterns | 331

Pattern gives us some of this separation and isolation, but we are required to add visitor
implementation logic to each Shape.

Let’s conclude with a discussion of one other option that may be applicable in some
contexts. If you have complete control over how shapes are constructed, e.g., through
a single factory, you can modify the factory to mix in traits that add new behaviors as
needed:

// code-examples/AppDesign/patterns/shapes-drawing-factory.scala

package shapes2 {
 trait Drawing {
 def draw: Unit
 }

 trait CircleDrawing extends Drawing {
 def draw = println("Circle.draw " + this)
 }
 trait RectangleDrawing extends Drawing {
 def draw = println("Rectangle.draw: " + this)
 }
 trait TriangleDrawing extends Drawing {
 def draw = println("Triangle.draw: " + this)
 }

 object ShapeFactory {
 def makeShape(args: Any*) = args(0) match {
 case "circle" => {
 val center = args(1).asInstanceOf[Point]
 val radius = args(2).asInstanceOf[Double]
 new Circle(center, radius) with CircleDrawing
 }
 case "rectangle" => {
 val lowerLeft = args(1).asInstanceOf[Point]
 val height = args(2).asInstanceOf[Double]
 val width = args(3).asInstanceOf[Double]
 new Rectangle(lowerLeft, height, width) with RectangleDrawing
 }
 case "triangle" => {
 val p1 = args(1).asInstanceOf[Point]
 val p2 = args(2).asInstanceOf[Point]
 val p3 = args(3).asInstanceOf[Point]
 new Triangle(p1, p2, p3) with TriangleDrawing
 }
 case x => throw new IllegalArgumentException("unknown: " + x)
 }
 }
}

We define a Drawing trait and concrete derived traits for each Shape class. Then we
define a ShapeFactory object with a makeShape factory method that takes a variable-
length list of arguments. A match is done on the first argument to determine which
shape to make. The trailing arguments are cast to appropriate types to construct each
shape, with the corresponding drawing trait mixed in. A similar factory could be written

332 | Chapter 13: Application Design

for adding draw methods that output XML. (The variable-length list of Any values,
heavy use of casting, and minimal error checking were done for expediency. A real
implementation could minimize these “hacks.”)

The following script exercises the factory:

// code-examples/AppDesign/patterns/shapes-drawing-factory-script.scala

import shapes2._

val p00 = Point(0.0, 0.0)
val p10 = Point(1.0, 0.0)
val p01 = Point(0.0, 1.0)

val list = List(
 ShapeFactory.makeShape("circle", p00, 5.0),
 ShapeFactory.makeShape("rectangle", p00, 2.0, 3.0),
 ShapeFactory.makeShape("triangle", p00, p10, p01))

list foreach { _.draw }

Compared to our previous scripts, the list of shapes is now constructed using the fac-
tory. When we want to draw the shapes in the foreach statement, we simply call draw
on each shape. As before, the output is the following:

Circle.draw Circle(Point(0.0,0.0),5.0)
Rectangle.draw: Rectangle(Point(0.0,0.0),2.0,3.0)
Triangle.draw: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0))

There is one subtlety with this approach that we should discuss. Notice that the script
never assigns the result of a ShapeFactory.makeShape call to a Shape variable. If it did
that, it would not be able to call draw on the instance!

In this script, Scala inferred a slightly different common supertype for the parameterized
list. You can see that type if you use the :load command to load the script while inside
the interactive scala interpreter, as in the following session:

$ scala -cp ...
Welcome to Scala version 2.8.0.final (Java ...).
Type in expressions to have them evaluated.
Type :help for more information.

scala> :load design-patterns/shapes-drawing-factory-script.scala
Loading design-patterns/shapes-drawing-factory-script.scala...
import shapes2._
p00: shapes2.Point = Point(0.0,0.0)
p10: shapes2.Point = Point(1.0,0.0)
p01: shapes2.Point = Point(0.0,1.0)
list: List[Product with shapes2.Shape with shapes2.Drawing] = List(...)
Circle.draw Circle(Point(0.0,0.0),5.0)
Rectangle.draw: Rectangle(Point(0.0,0.0),2.0,3.0)
Triangle.draw: Triangle(Point(0.0,0.0),Point(1.0,0.0),Point(0.0,1.0))

scala>

Design Patterns | 333

Notice the line that begins list: List[Product with shapes2.Shape with
shapes2.Drawing]. This line was printed after the list of shapes was parsed. The inferred
common supertype is Product with shapes2.Shape with shapes2.Drawing. Product is a
trait mixed into all case classes, such as our concrete subclasses of Shape. Recall that to
avoid case-class inheritance, Shape itself is not a case class. (See “Case
Classes” on page 136 for details on why case class inheritance should be avoided.) So,
our common supertype is an anonymous class that incorporates Shape, Product, and
the Drawing trait.

If you want to assign one of these drawable shapes to a variable and still be able to
invoke draw, use a declaration like the following (shown as a continuation of the same
interactive scala session):

scala> val s: Shape with Drawing = ShapeFactory.makeShape("circle", p00, 5.0)
s: shapes2.Shape with shapes2.Drawing = Circle(Point(0.0,0.0),5.0)

scala> s.draw
Circle.draw Circle(Point(0.0,0.0),5.0)

scala>

Dependency Injection in Scala: The Cake Pattern
Dependency injection (DI), a form of inversion of control (IoC), is a powerful technique
for resolving dependencies between “components” in larger applications. It supports
minimizing the coupling between these components, so it is relatively easy to substitute
different components for different circumstances.

It used to be that when a client object needed a database “accessor” object, for example,
it would just instantiate the accessor itself. While convenient, this approach makes unit
testing very difficult because you have to test with a real database. It also compromises
reuse, for those alternative situations where another persistence mechanism (or none)
is required. Inversion of control solves this problem by reversing responsibility for sat-
isfying the dependency between the object and the database connection.

An example of IoC is JNDI. Instead of instantiating an accessor object, the client object
asks JDNI to provide one. The client doesn’t care what actual type of accessor is re-
turned. Hence, the client object is no longer coupled to a concrete implementation of
the dependency. It only depends on an appropriate abstraction of a persistence accessor,
i.e., a Java interface or Scala trait.

Dependency injection takes IoC to its logical conclusion. Now the object does nothing
to resolve the dependency. Instead, an external mechanism with system-wide knowl-
edge “injects” the appropriate accessor object using a constructor argument or a setter
method. This happens when the client is constructed. DI eliminates dependencies on
IoC mechanisms in code (e.g., no more JNDI calls) and keeps objects relatively simple,
with minimal coupling to other objects.

334 | Chapter 13: Application Design

Back to unit testing, it is preferable to use a test double for heavyweight dependencies
to minimize the overhead and other complications of testing. Our client object with a
dependency on a database accessor object is a classic example. While unit testing the
client, the overhead and complications of using a real database are prohibitive. Using
a lightweight test double with hardcoded sample data provides simpler setup and tear
down, faster execution, and predictable behavior from the data accessor dependency.

In Java, DI is usually done using an inversion of control container, like the Spring
Framework ([SpringFramework]), or a Java-API equivalent like Google’s Guice API
(see [Guice]). These options can be used with Scala code, especially when you are
introducing Scala into a mature Java environment.

However, Scala offers some unique options for implementing DI in Scala code, which
are discussed by [Bonér2008b]. We’ll discuss one of them, the Cake Pattern, which can
replace or complement these other dependency injection mechanisms. We’ll see that
it is similar to the implementation of the Observer Pattern we discussed earlier in this
chapter, in “Self-Type Annotations and Abstract Type Members” on page 317. The
Cake Pattern was described by [Odersky2005], although it was given that name after
that paper was published. [Bonér2008b] also discusses alternatives.

Let’s build a simple component model for an overly simplified Twitter client. We want
a configurable UI, a configurable local cache of past tweets, and a configurable con-
nection to the Twitter service itself. Each of these “components” will be specified sep-
arately, along with a client component that will function as the “middleware” that ties
the application together. The client component will depend on the other components.
When we create a concrete client, we’ll configure in the concrete pieces of the other
components that we need:

// code-examples/AppDesign/dep-injection/twitter-client.scala

package twitterclient
import java.util.Date
import java.text.DateFormat

class TwitterUserProfile(val userName: String) {
 override def toString = "@" + userName
}

case class Tweet(
 val tweeter: TwitterUserProfile,
 val message: String,
 val time: Date) {

 override def toString = "(" +
 DateFormat.getDateInstance(DateFormat.FULL).format(time) + ") " +
 tweeter + ": " + message
}

trait Tweeter {
 def tweet(message: String)
}

Design Patterns | 335

trait TwitterClientUIComponent {
 val ui: TwitterClientUI

 abstract class TwitterClientUI(val client: Tweeter) {
 def sendTweet(message: String) = client.tweet(message)
 def showTweet(tweet: Tweet): Unit
 }
}

trait TwitterLocalCacheComponent {
 val localCache: TwitterLocalCache

 trait TwitterLocalCache {
 def saveTweet(tweet: Tweet): Unit
 def history: List[Tweet]
 }
}

trait TwitterServiceComponent {
 val service: TwitterService

 trait TwitterService {
 def sendTweet(tweet: Tweet): Boolean
 def history: List[Tweet]
 }
}

trait TwitterClientComponent {
 self: TwitterClientUIComponent with
 TwitterLocalCacheComponent with
 TwitterServiceComponent =>

 val client: TwitterClient

 class TwitterClient(val user: TwitterUserProfile) extends Tweeter {
 def tweet(msg: String) = {
 val twt = new Tweet(user, msg, new Date)
 if (service.sendTweet(twt)) {
 localCache.saveTweet(twt)
 ui.showTweet(twt)
 }
 }
 }
}

The first class, TwitterUserProfile, encapsulates a user’s profile, which we limit to the
username. The second class is a case class, Tweet, that encapsulates a single “tweet” (a
Twitter message, limited to 140 characters by the Twitter service). Besides the message
string, it encapsulates the user who sent the tweet and the date and time when it was
sent. We made this class a case class for the convenient support case classes provide
for creating objects and pattern matching on them. We didn’t make the profile class a
case class, because it is more likely to be used as the parent of more detailed profile
classes.

336 | Chapter 13: Application Design

Next is the Tweeter trait that declares one method, tweet. This trait is defined solely to
eliminate a potential circular dependency between two components, TwitterClient
Component and TwitterClientUIComponent. All the components are defined next in the
file.

There are four components. Note that they are implemented as traits:

• TwitterClientUIComponent, for the UI

• TwitterLocalCacheComponent, for the local cache of prior tweets

• TwitterServiceComponent, for accessing the Twitter service

• TwitterClientComponent, the client that pulls the pieces together

They all have a similar structure. Each one declares a nested trait or class that encap-
sulates the component’s behavior. Each one also declares a val with one instance of
the nested type.

Often in Java, packages are informally associated with components. This is common
in other languages, too, using their equivalent of a package, e.g., a module or a name-
space. Here we define a more precise notion of a component, and a trait is the best
vehicle for it, because traits are designed for mixin composition.

TwitterClientUIComponent declares a val named ui of the nested type Twitter
ClientUI. This class has a client field that must be initialized with a Tweeter instance.
In fact, this instance will be a TwitterClient (defined in TwitterClientComponent),
which extends Tweeter.

TwitterClientUI has two methods. The first is sendTweet, which is defined to call the
client object. This method would be used by the UI to call the client when the user
sends a new tweet. The second method, showTweet, goes the other direction. It is called
whenever a new tweet is to be displayed, e.g., from another user. It is abstract, pending
the “decision” of the kind of UI to use.

Similarly, TwitterLocalCacheComponent declares TwitterLocalCache and an instance of
it. Instances with this trait save tweets to the local persistent cache when saveTweet is
called. You can retrieve the cached tweets with history.

TwitterServiceComponent is very similar. Its nested type has a method, sendTweet, that
sends a new tweet to Twitter. It also has a history method that retrieves all the tweets
for the current user.

Finally, TwitterClientComponent contains a concrete class, TwitterClient, that integra-
tes the components. Its one tweet method sends new tweets to the Twitter service. If
successful, it sends the tweet back to the UI and to the local persistent cache.

TwitterClientComponent also has the following self-type annotation:

self: TwitterClientUIComponent with
 TwitterLocalCacheComponent with
 TwitterServiceComponent =>

Design Patterns | 337

The effect of this declaration is to say that any concrete TwitterClientComponent must
also behave like these other three components, thereby composing all the components
into one client application instance. This composition will be realized by mixing in
these components, which are traits, when we create concrete clients, as we will see
shortly.

The self-type annotation also means we can reference the vals declared in these com-
ponents. Notice how TwitterClient.tweet references the service, localCache, and the
ui as if they are variables in the scope of this method. In fact, they are in scope, because
of the self-type annotation.

Notice also that all the methods that call other components are concrete. Those inter-
component relationships are fully specified. The abstractions are directed “outward,”
toward the graphical user interface, a caching mechanism, etc.

Let’s now define a concrete Twitter client that uses a textual (command-line) UI, an
in-memory local cache, and fakes the interaction with the Twitter service:

// code-examples/AppDesign/dep-injection/twitter-text-client.scala

package twitterclient

class TextClient(userProfile: TwitterUserProfile)
 extends TwitterClientComponent
 with TwitterClientUIComponent
 with TwitterLocalCacheComponent
 with TwitterServiceComponent {

 // From TwitterClientComponent:

 val client = new TwitterClient(userProfile)

 // From TwitterClientUIComponent:

 val ui = new TwitterClientUI(client) {
 def showTweet(tweet: Tweet) = println(tweet)
 }

 // From TwitterLocalCacheComponent:

 val localCache = new TwitterLocalCache {
 private var tweets: List[Tweet] = Nil

 def saveTweet(tweet: Tweet) = tweets ::= tweet

 def history = tweets
 }

 // From TwitterServiceComponent

 val service = new TwitterService() {
 def sendTweet(tweet: Tweet) = {
 println("Sending tweet to Twitter HQ")

338 | Chapter 13: Application Design

 true
 }
 def history = List[Tweet]()
 }
}

Our TextClient concrete class extends TwitterClientComponent and mixes in the three
other components. By mixing in the other components, we satisfy the self-type anno-
tations in TwitterClientComponent. In other words, TextClient is also a TwitterClientUI
Component, a TwitterLocalCacheComponent, and a TwitterServiceComponent, in addition
to being a TwitterClientComponent.

The TextClient constructor takes one argument, a user profile, which will be passed
onto the nested client class.

TextClient has to define four vals, one from TwitterClientComponent and three from
the other mixins. For the client, it simply creates a new TwitterClient, passing it the
userProfile.

For the ui, it instantiates an anonymous class derived from TwitterClientUI. It defines
showTweet to print out the tweet.

For the localCache, it instantiates an anonymous class derived from
TwitterLocalCache. It keeps the history of tweets in a List.

Finally, for the service, it instantiates an anonymous class derived from
TwitterService. This “fake” defines sendTweet to print out a message and to return an
empty list for the history.

Let’s try our client with the following script:

// code-examples/AppDesign/dep-injection/twitter-text-client-script.scala

import twitterclient._

val client = new TextClient(new TwitterUserProfile("BuckTrends"))
client.ui.sendTweet("My First Tweet. How's this thing work?")
client.ui.sendTweet("Is this thing on?")
client.ui.sendTweet("Heading to the bathroom...")
println("Chat history:")
client.localCache.history.foreach {t => println(t)}

We instantiate a TextClient for the user “BuckTrends.” Old Buck sends three insightful
tweets through the UI. We finish by reprinting the history of tweets, in reverse order,
that are cached locally. Running this script yields output like the following:

Sending tweet to Twitter HQ
(Sunday, May 3, 2009) @BuckTrends: My First Tweet. How's this thing work?
Sending tweet to Twitter HQ
(Sunday, May 3, 2009) @BuckTrends: Is this thing on?
Sending tweet to Twitter HQ
(Sunday, May 3, 2009) @BuckTrends: Heading to the bathroom...
Chat history:
(Sunday, May 3, 2009) @BuckTrends: Heading to the bathroom...

Design Patterns | 339

(Sunday, May 3, 2009) @BuckTrends: Is this thing on?
(Sunday, May 3, 2009) @BuckTrends: My First Tweet. How's this thing work?

Your date will vary, of course. Recall that the Sending tweet to Twitter HQ line is
printed by the fake service.

To recap, each major component in the Twitter client was declared in its own trait,
with a nested type for the component’s fields and methods. The client component
declared its dependencies on the other components through a self-type annotation. The
concrete client class mixed in those components and defined each component val to
be an appropriate subtype of the corresponding abstract classes and traits that were
declared in the components.

We get type-safe “wiring” together of components, a flexible component model, and
we did it all in Scala code! There are alternatives to the Cake Pattern for implementing
dependency injection in Scala. See [Bonér2008b] for other examples.

Better Design with Design By Contract
We’ll conclude this chapter with a look at an approach to programming called Design
by Contract ([DesignByContract]), which was developed by Bertrand Meyer for the
Eiffel language (see [Eiffel], [Hunt2000], and Chapter 4). Design by Contract has been
around for about 20 years. It has fallen somewhat out of favor, but it is still very useful
for thinking about design.

When considering the “contract” of a module, you can specify three types of conditions.
First, you can specify the required inputs for a module to successfully perform a service
(e.g., when a method is called). These constraints are called preconditions. They can
also include system requirements, e.g., global data (which you should normally avoid,
of course).

You can also specify the results the module guarantees to deliver, the postconditions, if
the preconditions were satisfied.

Finally, you can specify invariants that must be true before and after an invocation of
a service.

The specific addition that Design by Contract brings is the idea that these contractual
constraints should be specified as executable code, so they can be enforced automati-
cally at runtime, but usually only during testing.

A constraint failure should terminate execution immediately, forcing you to fix the bug.
Otherwise, it is very easy to ignore these bugs.

Scala doesn’t provide explicit support for Design by Contract, but there are several
methods in Predef that can be used for this purpose. The following example shows
how to use require and assume for contract enforcement:

340 | Chapter 13: Application Design

// code-examples/AppDesign/design-by-contract/bank-account.scala

class BankAccount(val balance: Double) {
 require(balance >= 0.0)
 def debit(amount: Double) = {
 require(amount > 0.0, "The debit amount must be > 0.0")
 assume(balance - amount > 0.0, "Overdrafts are not permitted")
 new BankAccount(balance - amount)
 }
 def credit(amount: Double) = {
 require(amount > 0.0, "The credit amount must be > 0.0")
 new BankAccount(balance + amount)
 }
}

The class BankAccount uses require to ensure that a non-negative balance is specified
for the constructor. Similarly, the debit and credit methods use require to ensure that
a positive amount is specified.

The specification in Example 13-1 confirms that the “contract” is obeyed.

Example 13-1. design-by-contract/bank-account-spec.scala: Testing the contract

// code-examples/AppDesign/design-by-contract/bank-account-spec.scala

import org.specs._

object BankAccountSpec extends Specification {
 "Creating an account with a negative balance" should {
 "fail because the initial balance must be positive." in {
 new BankAccount(-100.0) must throwAn[IllegalArgumentException]
 }
 }

 "Debiting an account" should {
 "fail if the debit amount is < 0" in {
 val account = new BankAccount(100.0)
 (account.debit(-10.0)) must throwAn[IllegalArgumentException]
 }
 }

 "Debiting an account" should {
 "fail if the debit amount is > the balance" in {
 val account = new BankAccount(100.0)
 (account.debit(110.0)) must throwAn[AssertionError]
 }
 }
}

If we attempt to create a BankAccount with a negative balance, an IllegalArgumentExcep
tion is thrown. Similarly, the same kind of exception is thrown if the debit amount is
less than zero. Both conditions are enforced using require, which throws an
IllegalArgumentException when the condition specified is false.

Better Design with Design By Contract | 341

The assume method, which is used to ensure that overdrafts don’t occur, is functionally
almost identical to require. It throws an AssertionError instead of an
IllegalArgumentException.

Both require and assume come in two forms: one that takes just a boolean condition,
and the other that also takes an error message string.

There is also an assert pair of methods that behave identically to assume, except for a
slight change in the generated failure message. Pick assert or assume depending on
which of these “names” provides a better conceptual fit in a given context.

Predef also defines an Ensuring class that can be used to generalize the capabilities of
these methods. Ensuring has one overloaded method, ensure, some versions of which
take a function literal as a “predicate.”

A drawback of using these methods and Ensuring is that you can’t disable these checks
in production. It may not be acceptable to terminate abruptly if a condition fails, al-
though if the system is allowed to “limp along,” it might crash later and the problem
would be harder to debug. The performance overhead may be another reason to disable
contract checks at runtime.

These days, the goals of Design by Contract are largely met by Test-Driven Develop-
ment (TDD). However, thinking in terms of Design by Contract will complement the
design benefits of TDD. If you decide to use Design by Contract in your code, consider
creating a custom module that lets you disable the tests for production code.

Recap and What’s Next
We learned a number of pragmatic techniques, patterns, and idioms for effective ap-
plication development using Scala.

Good tools and libraries are important for building applications in any language. The
next chapter provides more details about Scala’s command-line tools, describes the
state of Scala IDE support, and introduces you to some important Scala libraries.

342 | Chapter 13: Application Design

CHAPTER 14

Scala Tools, Libraries, and IDE Support

In the previous chapter, Chapter 13, we looked at how to design scalable applications
in Scala. In this chapter, we discuss tools and libraries that are essential for Scala ap-
plication developers.

We briefly introduced you to the Scala command-line tools in Chapter 1. Now we
explore these tools in greater detail and learn about other tools that are essential for
the Scala developer. We’ll discuss language-aware plugins for editors and IDEs, testing
tools, and various libraries and frameworks. We won’t cover these topics in exhaustive
detail, but we will tell you where to look for more information.

Command-Line Tools
Even if you do most of your work with IDEs, understanding how the command-line
tools work gives you additional flexibility, as well as a fallback should the graphical
tools fail you. In this chapter, we’ll give you some practical advice for interacting with
these tools. However, we won’t describe each and every command-line option. For
those gory details, we recommend downloading and consulting the tool documentation
package scala-devel-docs, as described in “For More Information” on page 10 and
also in “The sbaz Command-Line Tool” on page 352.

All the command-line tools are installed in the scala-home/bin directory (see “Installing
Scala” on page 8).

scalac Command-Line Tool
The scalac command compiles Scala source files, generating JVM class files. In contrast
with Java requirements, the source file name doesn’t have to match the public class
name in the file. In fact, you can define as many public classes in the file as you want.
You can also use arbitrary package declarations without putting the files in corre-
sponding directories.

343

However, in order to conform to JVM requirements, a separate class file will be
generated for each type with a name that corresponds to the type’s name (sometimes
encoded, e.g., for nested type definitions). Also, the class files will be written to direc-
tories corresponding to the package declarations. We’ll see an example of the types of
class files generated in the next section, when we discuss the scala command.

The scalac command is just a shell-script wrapper around the java command, passing
it the name of the Scala compiler’s Main object. It adds Scala JAR files to the
CLASSPATH and it defines several Scala-related system properties. You invoke the com-
mand as follows:

scalac [options ...] [source-files]

For example, we used the following scalac invocation command in “A Taste of
Scala” on page 10, where we created a simple command-line tool to convert input
strings to uppercase:

scalac upper3.scala

Table 14-1 shows the list of the scalac options, as reported by scalac -help.

Table 14-1. The scalac command options

Option Description

-X Print a synopsis of advanced options.

-bootclasspath path Override location of bootstrap class files.

-classpath path Specify where to find user class files.

-d directory Specify where to place generated class files.

-dependencyfile file Specify the file in which dependencies are tracked. (version 2.8)

-deprecation Output source locations where deprecated APIs are used.

-encoding encoding Specify character encoding used by source files.

-explaintypes Explain type errors in more detail.

-extdirs dirs Override location of installed compiler extensions.

-g:level Specify level of generated debugging info: none, source, line, vars, notailcalls.

-help Print a synopsis of standard options.

-make:strategy Specify recompilation detection strategy: all, changed, immediate, transitive.
(version 2.8)

-nowarn Generate no warnings.

-optimise Generate faster byte code by applying optimizations to the program.

-print Print program with all Scala-specific features removed.

-sourcepath path Specify where to find input source files.

-target:target Specify for which target JVM object files should be built: jvm-1.5, jvm-1.4, msil.

-unchecked Enable detailed unchecked warnings.

-uniqid Print identifiers with unique names for debugging.

344 | Chapter 14: Scala Tools, Libraries, and IDE Support

Option Description

-verbose Output messages about what the compiler is doing.

-version Print product version and exit.

@ file A text file containing compiler arguments (options and source files).

We recommend routine use of the -deprecation and -unchecked options.
They help prevent some bugs and encourage you to eliminate use of
obsolete libraries.

The advanced -X options control verbose output, fine-tune the compiler behavior, in-
cluding use of experimental extensions and plugins, etc. We’ll discuss the -Xscript
option when we discuss the scala command in the next section.

A few other advanced options, -Xfuture and -Xcheckinit, are useful for the val override
issue described in “Overriding Abstract and Concrete Fields in Traits” on page 114 that
affects Scala version 2.7.X. Similarly, the -Xexperimental option enables experimental
changes and issues warnings for potentially risky behavior changes. See “Overriding
Abstract and Concrete Fields in Traits” on page 114 for details.

An important feature of scalac is its plugin architecture, which has been significantly
enhanced in version 2.8. Compiler plugins can be inserted in all phases of the compi-
lation, enabling code transformations, analysis, etc. For example, version 2.8 will in-
clude a continuations plugin that developers can use to generate byte code that uses a
continuation-passing style (CPS), rather than a stack-based style. Other plugins that
are under development include an “effects” analyzer, useful for determining whether
functions are truly side-effect-free, whether or not variables are modified, etc. Finally,
the preliminary sxr documentation tool (see [SXR]) uses a compiler plugin to generate
hyperlinked documentation of Scala code.

You can read more information about scalac in the developer tools documentation
that you can install with the sbaz command, discussed later in “The sbaz Command-
Line Tool” on page 352. In particular, Table 14-4 shows an example sbaz command
that installs the scala-devel-docs documentation.

Scala version 2.8 compiled byte code will not be fully compatible with
version 2.7.5 byte code. Source compatibility will be preserved in most
cases. If you have your own collections implementations, they may
require changes.

The scala Command-Line Tool
The scala command is also a shell-script wrapper around the java command. It adds
Scala JAR files to the CLASSPATH, and it defines several Scala-related system properties.
You invoke the command as follows:

Command-Line Tools | 345

scala [options ...] [script-or-object] [arguments]

For example, after compiling our upper3.scala file in “A Taste of Scala” on page 10,
which we revisited in the previous discussion of scalac, we can execute the “applica-
tion” as follows:

scala -cp . Upper Hello World!

The -cp . option adds the current working directory to the class path. Upper is the class
name with a main method to run. Hello World are arguments passed to Upper. This
command produces the following output:

 HELLO WORLD!

The command decides what to do based on the script-or-object specified. If you don’t
specify a script or object, scala runs as an interactive interpreter. You type in code that
is evaluated on the fly, a setup sometimes referred to as a REPL (Read, Evaluate, Print,
Loop). There are a few special commands available in the interactive mode.
Type :help to see a list of them.

The version 2.8 REPL adds many enhancements, including code
completion.

Our Upper example demonstrates the case where you specify a fully qualified object
name (or Java class name). In this case, scala behaves just like the java command; it
searches the CLASSPATH for the corresponding code. It will expect to find a main method
in the type. Recall that for Scala types, you have to define main methods in objects. Any
arguments are passed as arguments to the main method.

If you specify a Scala source file for script-or-object, scala interprets the file as a script
(i.e., compiles and runs it). Many of the examples in the book are invoked this way.
Any arguments are made available to the script in the args array. Here is an example
script that implements the same “upper” feature:

// code-examples/ToolsLibs/upper-script.scala

args.map(_.toUpperCase()).foreach(printf("%s ",_))
println("")

If we run this script with the following command, scala upper.scala Hello World, we
get the same output we got before, HELLO WORLD.

Finally, if you invoke scala without a script file or object name argument, scala runs
in interpreted mode. Here is an example interactive session:

$ scala
Welcome to Scala version 2.8.0.final (Java ...).
Type in expressions to have them evaluated.
Type :help for more information.

346 | Chapter 14: Scala Tools, Libraries, and IDE Support

scala> "Programming Scala" foreach { c => println(c) }
P
r
o
g
...

The scala command accepts all the options that scalac accepts (see Table 14-1), plus
the options listed in Table 14-2.

Table 14-2. The scala command options (in addition to the scalac options)

Option Description

-howtorun script Explicitly interpret script-or-object as a script file.

-howtorun object Explicitly interpret script-or-object as a compiled object.

-howtorun guess Guess what script-or-object is (default).

-i file Preload file. It is only meaningful for interactive shells.

-e argument Parse argument as Scala code.

-savecompiled Save the compiled script for future use.

-nocompdaemon Don’t use fsc, the offline compiler. (See “The fsc Command-Line Tool” on page 353.)

-Dproperty=value Set a Java system property to value.

Use the -i file option in the interactive mode when you want to preload a file before
typing commands. Once in the shell, you can also load a file using the com-
mand :load filename. Table 14-3 lists the special :X commands available within the
interactive mode.

Table 14-3. Commands available within the scala interactive mode

Option Description

:help Prints a help message about these commands.

:load Followed by a file name, loads a Scala file.

:replay Resets execution and replays all previous commands.

:quit Exits the interpreter.

:power Enables power user mode. (version 2.8)

The new “power user mode” adds additional commands for viewing in-memory data,
such as the abstract syntax tree and interpreter properties, and for doing other
operations.

For batch-mode invocation, use the -e argument option to specify Scala code to interpret.
If you are using command shells that support I/O redirection (e.g., the Bourne shell,
the C shell, or their descendants) and you need to build up lines of code dynamically,

Command-Line Tools | 347

you can also pipe the code into scala, as shown in the following somewhat contrived
bash script example:

#!/usr/bin/env bash
code-examples/ToolsLibs/pipe-example.sh

h=Hello
w=World
function commands {
cat <<-EOF
println("$h")
println("$w")
EOF
}

commands | scala

Invoking scripts with scala is tedious when you use these scripts frequently. On Win-
dows and Unix-like systems, you can create standalone Scala scripts that don’t require
you to use the scala script-file-name invocation.

For Unix-like systems, the following example demonstrates how to make an executable
script. Remember that you have to make the permissions executable, e.g., chmod +x
secho:

#!/bin/sh
exec scala "$0" "$@"
!#
print("You entered: ")
argv.toList foreach { s => format("%s ", s) }
println

Here is how you might use it:

$ secho Hello World
You entered: Hello World

Similarly, here is an example Windows .bat command:

::#!
@echo off
call scala %0 %*
goto :eof
::!#
print("You entered: ")
argv.toList foreach { s => format("%s ", s) }
println

See the scala man page in the developer documentation package scala-devel-docs to
find out more about all the command-line options for scala,

Limitations of scala versus scalac

There are some limitations when running a source file with scala versus compiling it
with scalac.

348 | Chapter 14: Scala Tools, Libraries, and IDE Support

Any scripts executed with scala are wrapped in an anonymous object that looks more
or less like the following example:

// code-examples/ToolsLibs/script-wrapper.scala

object Script {
 def main(args: Array[String]): Unit = {
 new AnyRef {
 // Your script code is inserted here.
 }
 }
}

As of this writing, Scala objects cannot embed package declarations, and as such you
can’t declare packages in scripts. This is why the examples in this book that declare
packages must be compiled and executed separately, such as this example from Chap-
ter 2:

// code-examples/TypeLessDoMore/package-example1.scala

package com.example.mypkg

class MyClass {
 // ...
}

Conversely, there are valid scripts that can’t be compiled with scalac, unless a special
-X option is used. For example, function definitions and function invocations outside
of types are not allowed. The following example runs fine with scala:

// code-examples/ToolsLibs/example-script.scala

case class Message(name: String)

def printMessage(msg: Message) = {
 println(msg)
}

printMessage(new Message(
 "Must compile this script with scalac -Xscript <name>!"))

Running this script with scala produces the following expected output:

Message(Must compile this script with scalac -Xscript <name>!)

However, if you try to compile the script with scalac (without the -Xscript option),
you get the following errors:

example-script.scala:3: error: expected class or object definition
def printMessage(msg: Message) = {
^
example-script.scala:7: error: expected class or object definition
printMessage(new Message("Must compile this script with scalac -Xscript <name>!"))
^
two errors found

Command-Line Tools | 349

The script itself describes the solution; to compile this script with scalac you must add
the option -Xscript name, where name is the name you want to give the compiled class
file. For example, using MessagePrinter for name will result in the creation of several
class files with the name prefix MessagePrinter:

scalac -Xscript MessagePrinter example-script.scala

You can now run the compiled code with the command:

scala -classpath . MessagePrinter

The current directory will contain the following class files:

MessagePrinter$$anon1Message$.class
MessagePrinter$$anon1Message.class
MessagePrinter$$anon$1.class
MessagePrinter$.class
MessagePrinter.class

What are all those files? MessagePrinter and MessagePrinter$ are wrappers generated
by scalac to provide the entry point for the script as an “application.” Recall that we
specified MessagePrinter as the name argument for -Xscript. MessagePrinter has the
static main method we need.

MessagePrinter$$anon$1 is a generated class that wraps the whole script. The
printMessage method in the script is a method in this class. MessagePrinter$$anon
1Message and MessagePrinter$$anon1Message$ are the Message class and companion
object, respectively, that are declared in the script. They are nested inside the generated
class MessagePrinter$$anon$1 for the whole script. If you want to see what’s inside these
class files, use one of the decompilers, which we describe next.

The scalap, javap, and jad Command-Line Tools
When you are learning Scala and you want to understand how Scala constructs are
mapped to the runtime, there are several decompilers that are very useful. They are
especially useful when you need to invoke Scala code from Java and you want to know
how Scala names are mangled into JVM-compatible names, or you want to understand
how the scala compiler translates Scala features into valid byte code.

Let’s discuss three decompilers and the benefits they offer. Since the class files generated
by scalac contain valid JVM byte codes, you can use Java decompilers tools:

• scalap is included with the Scala distribution. It outputs declarations as they would
appear in Scala source code.

• javap is included with the JDK. It outputs declarations as they would appear in
Java source code. Therefore, running javap on Scala-generated class files is a good
way to see how Scala definitions are mapped to valid byte code.

350 | Chapter 14: Scala Tools, Libraries, and IDE Support

• jad is an open source command-line tool (see [JAD]). It attempts to reconstruct an
entire Java source file from the class file, including method definitions, as well as
the declarations.

MessagePrinter.class is one of the class files generated from the example script in the
previous section. Let’s run scalap -classpath . MessagePrinter. We get the following
output:

package MessagePrinter;
final class MessagePrinter extends scala.AnyRef {
}
object MessagePrinter {
 def main(scala.Array[java.lang.String]): scala.Unit;
 def $tag(): scala.Int;
 throws java.rmi.RemoteException
}

Note that the first method inside object MessagePrinter is the main method. The
$tag method is part of Scala’s internal implementation. It is an abstract method defined
by ScalaObject. The compiler automatically generates implementations for concrete
types. The $tag method was originally introduced to optimize pattern matching, but it
is now deprecated and it may be removed in a forthcoming release of Scala.

Let’s compare the scalap output to what we get when we run javap -classpath .
MessagePrinter:

Compiled from "(virtual file)"
public final class MessagePrinter extends java.lang.Object{
 public static final void main(java.lang.String[]);
 public static final int $tag() throws java.rmi.RemoteException;
}

Now we see the declaration of main as we would typically see it in a Java source file.

Finally, to use jad, you simply give it the file name of the class file. It generates a cor-
responding output file with the .jad extension. If you run jad MessagePrinter.class,
you get a long file named MessagePrinter.jad. You will also get several warnings that
jad could not fully decompile some methods. We won’t reproduce the output here,
but the .jad file will print normal Java statements interspersed with several sections of
JVM byte code instructions, where it could not decompile the byte code.

All these tools have command-line help:

• scalap -help

• javap -help

• jad --help

The Scala developer documentation contains documentation for scalap. Similar doc-
umentation comes with the JDK for javap. The jad distribution includes a README
file with documentation. The Mac and Linux distributions also include a man page.

Command-Line Tools | 351

Finally, as an exercise, compile the following very simple Complex class, representing
complex numbers. Then run scalap, javap, and jad on the resulting class files:

// code-examples/ToolsLibs/complex.scala

case class Complex(real: Double, imaginary: Double) {
 def +(that: Complex) =
 new Complex(real + that.real, imaginary + that.imaginary)
 def -(that: Complex) =
 new Complex(real - that.real, imaginary - that.imaginary)
}

How are the + and - methods encoded? What are the names of the reader methods for
the real and imaginary fields? What Java types are used for the fields?

The scaladoc Command-Line Tool
The scaladoc command is analogous to javadoc. It is used to generate documentation
from Scala source files, called Scaladocs. The scaladoc parser supports the same @
annotations that javadoc supports, such as @author, @param, etc.

If you use scaladoc for your documentation, you might want to investigate vscaladoc,
an improved scaladoc tool that is available at http://code.google.com/p/vscaladoc/. You
can also find documentation on vscaladoc at [ScalaTools].

The sbaz Command-Line Tool
The Scala Bazaar System (sbaz) is a packaging system that helps automate maintenance
of a Scala installation. It is analogous to the gem packaging system for Ruby, CPAN for
Perl, etc.

There is a nice summary of how to use sbaz on the scala-lang.org website. All command-
line options are described in the developer documentation. Table 14-4 summarizes the
most useful options.

Table 14-4. The most useful sbaz command options

Command Description

sbaz showuniverse Show the current “universe” (remote repository). Defaults to http://scala-we
bapps.epfl.ch/sbaz/scala-dev.

sbaz setuniverse univ Points to a new “universe” univ.

sbaz installed What’s already installed locally?

sbaz available What goodness awaits on the Interwebs?

sbaz install scala-devel-docs Install the invaluable scala-devel-docs package (for example).

sbaz upgrade Upgrade all installed packages to the latest and greatest.

Note that a remote repository used by sbaz is called a “universe.”

352 | Chapter 14: Scala Tools, Libraries, and IDE Support

http://code.google.com/p/vscaladoc/
http://www.scala-lang.org/node/93
http://scala-webapps.epfl.ch/sbaz/scala-dev
http://scala-webapps.epfl.ch/sbaz/scala-dev

The fsc Command-Line Tool
The fast (offline) scala compiler runs as a daemon process to enable faster invocations
of the compiler, mostly by eliminating the startup overhead. It is particularly useful
when running scripts repeatedly (for example, when re-running a test suite until a bug
can be reproduced). In fact, fsc is invoked automatically by the scala command. You
can also invoke it directly.

Build Tools
Scala plugins have been implemented for several, commonly used build tools, including
Ant, Maven, and Buildr. There are also several build tools written in Scala and aimed
specifically at Scala development. Perhaps the best known example of these tools is
SBT (simple build tool—see [SBT]).

These plugins and tools are documented very well on their respective websites, so we
refer you to those sites for details.

The Scala distribution includes Ant tasks for scalac, fsc, and scaladoc. They are used
very much like the corresponding Java Ant tasks. They are described at http://scala-lang
.org/node/98.

A Scala Maven plugin is available at http://scala-tools.org/mvnsites/maven-scala-plu
gin/. It does not require Scala to be installed, as it will download Scala for you. Several
third-party Scala projects, such as Lift (see “Lift” on page 367), use Maven.

Buildr is an Apache project available at http://buildr.apache.org/. It is aimed at JVM
applications written in any language, with built-in support for Scala and Groovy as well
as Java. It is compatible with Maven repositories and project layouts. Since build scripts
are written in Ruby, they tend to be much more succinct than corresponding Maven
files. Buildr is also useful for testing JVM applications with Ruby testing tools, like
RSpec and Cucumber, if you use JRuby to run your builds.

The Scala-oriented SBT, available at http://code.google.com/p/simple-build-tool/, has
some similarities to Buildr. It is also compatible with Maven, but it uses Scala as the
language for writing build scripts. It also has built-in support for generating Scaladocs
and for testing with ScalaTest, Specs, and ScalaCheck.

Integration with IDEs
If you come from a Java background, you are probably a little bit spoiled by the rich
features of today’s Java IDEs. Scala IDE support is not yet as good, but it is evolving
rapidly in Eclipse, IntelliJ IDEA, and NetBeans. At the time of this writing, all the Scala
plugins for these IDEs support syntax highlighting, project management, limited
support for automated refactorings, etc. While each of the plugins has particular ad-

Integration with IDEs | 353

http://ant.apache.org/
http://maven.apache.org/
http://buildr.apache.org/
http://scala-lang.org/node/98
http://scala-lang.org/node/98
http://scala-tools.org/mvnsites/maven-scala-plugin/
http://scala-tools.org/mvnsites/maven-scala-plugin/
http://buildr.apache.org/
http://rspec.info
http://cukes.info
http://jruby.codehaus.org/
http://code.google.com/p/simple-build-tool/

vantages over the others, they are all close enough in functionality that you will prob-
ably find it acceptable to adopt the plugin for the IDE that you already prefer.

This section describes how to use the Scala support available in Eclipse, IntelliJ IDEA,
and NetBeans. We assume you already know how to use each IDE for development in
other languages, like Java.

Eclipse
For details on the Eclipse Scala plugin, start at this web page, http://www.scala-lang
.org/node/94. If you are interested in contributing to the development of the plugin, see
this web page, http://lampsvn.epfl.ch/trac/scala/wiki/EclipsePlugin.

Installing the Scala plugin

The plugin requires JDK 5 or higher (JDK 6 is recommended) and Eclipse 3.3 or higher
(Eclipse 3.4 is recommended). The plugin installs the Scala SDK itself. To install the
plugin, invoke the “Software Updates” command in the Help menu.

Click the Available Software tab and click the “Add Site…” button on the righthand
side. You will see the dialog shown in Figure 14-1.

Figure 14-1. The Add Site Eclipse dialog

354 | Chapter 14: Scala Tools, Libraries, and IDE Support

http://www.scala-lang.org/node/94
http://www.scala-lang.org/node/94
http://lampsvn.epfl.ch/trac/scala/wiki/EclipsePlugin

Enter the URL that is shown in the figure, http://www.scala-lang.org/scala-eclipse-plu
gin. Some people prefer to work with the nightly releases, http://www.scala-lang.org/
scala-eclipse-plugin-nightly, but you should be aware that there is no guarantee they
will work!

Select the checkbox next to the newly added update site and click the Install button,
as indicated in Figure 14-2. Don’t click the “default” Close button!

Figure 14-2. The Software Updates and Add-ons dialog

It is easy to be confused by the poor usability of the Software Updates
dialog.

After finding the plugin on the update site, an Install dialog is presented. Click through
the sequence of screens to complete the installation. You will be asked to restart Eclipse
when the installation completes.

Developing Scala applications

Once the plugin is installed, you can create Scala projects using the File → New →
Other… menu item. You will find a Scala Wizards folder that contains a wizard called
Scala Project. This wizard works just like the familiar Java Project Wizard.

You can work with your Scala project using most of the same commands you would
use with a typical Java project. For example, you can create a new Scala trait, class,
or object using the context menu.

The Eclipse Scala plugin still has some rough edges, but Scala developers using Eclipse
should find it acceptable for their daily needs.

Integration with IDEs | 355

http://www.scala-lang.org/scala-eclipse-plugin
http://www.scala-lang.org/scala-eclipse-plugin
http://www.scala-lang.org/scala-eclipse-plugin-nightly
http://www.scala-lang.org/scala-eclipse-plugin-nightly

IntelliJ
The IntelliJ IDEA team provides a beta-quality Scala plugin. Start here for details: http:
//www.jetbrains.net/confluence/display/SCA/Scala+Plugin+for+IntelliJ+IDEA.

Installing the Scala plugins

To use the plugin, you must use IntelliJ 8.0.X or later. Consider using the most recent
“EAP” build for the latest feature updates.

To install the Scala plugin, start IDEA. Open the Settings panel, e.g., using the File →
Settings menu item. On the lefthand side, scroll down to and click the Plugins item, as
shown in Figure 14-3.

Figure 14-3. IntelliJ IDEA Settings → Plugins

Select the Available tab on the righthand side. Scroll down to the Scala plugin, as shown
in Figure 14-4.

Figure 14-4. Available IntelliJ IDEA Scala plugins

356 | Chapter 14: Scala Tools, Libraries, and IDE Support

http://www.jetbrains.net/confluence/display/SCA/Scala+Plugin+for+IntelliJ+IDEA
http://www.jetbrains.net/confluence/display/SCA/Scala+Plugin+for+IntelliJ+IDEA

Right-click the Scala plugin name and select “Download and Install” from the menu.
Repeat for the Scala Application plugin. You will have to restart IDEA for the plugins
to be enabled.

After IDEA restarts, confirm that the two plugins were installed correctly by reopening
the Plugin Manager. Click the Installed tab and scroll down to find the two Scala plu-
gins. They should be listed with a black font, and the checkboxes next to them should
be checked, as seen in Figure 14-5.

Figure 14-5. Installed IntelliJ IDEA Scala plugins

If the font is red or the checkboxes are not checked, refer to the Scala plugin web page
above for debugging help.

Developing Scala applications

To create an IDEA Scala project, start by selecting the File → New Project menu item.
In the dialog, select the appropriate radio button for your situation, e.g., “Create New
Project from Scratch.”

On the next screen, select “Java Module” and fill in the usual project information. An
example is shown in Figure 14-6.

Integration with IDEs | 357

Figure 14-6. Specifying IntelliJ IDEA Scala project details

Click through to the screen titled “Please Select Desired Technology.” Check the
“Scala” checkbox, and check the “New Scala SDK” checkbox. Click the button labeled
“…” to navigate to the location of your Scala SDK installation, as shown in Fig-
ure 14-7. You will only need to specify the SDK the first time you create a project or
when you install a new SDK in a different location.

Figure 14-7. Adding Scala to the IntelliJ IDEA project

Click Finish. You will be prompted to create either a project or an application. Select
“Application” if you want to share this project with other Scala projects on the same
machine.

358 | Chapter 14: Scala Tools, Libraries, and IDE Support

Now you can work with your Scala project using most of the same commands you
would use with a typical Java project. For example, you can create a new Scala trait,
object, or class using the context menu, as for Java projects.

The IntelliJ IDEA Scala plugin is still beta-quality, but Scala developers using IDEA
should find it acceptable for their daily needs.

NetBeans
NetBeans has beta-quality Scala plugins. Start at this web page for details, http://wiki
.netbeans.org/Scala. NetBeans 6.5 or a more recent nightly build is required. The Scala
plugin contains a version of the Scala SDK. The wiki page provides instructions for
using a different SDK, when desired.

Installing the Scala plugins

To install the plugin, download the plugins ZIP file from http://sourceforge.net/project/
showfiles.php?group_id=192439&package_id=256544. Unzip the file in a convenient
directory.

Start NetBeans and invoke the Tools → Plugins menu item. Select the Downloaded tab
and click the “Add Plugins…” button. Choose the directory where the Scala plugins are
unzipped, and select all the listed *.nbm files, as shown in Figure 14-8. Click Open.

Figure 14-8. Adding the Scala plugins to be installed

Integration with IDEs | 359

http://wiki.netbeans.org/Scala
http://wiki.netbeans.org/Scala
http://sourceforge.net/project/showfiles.php?group_id=192439&package_id=256544
http://sourceforge.net/project/showfiles.php?group_id=192439&package_id=256544

Back in the Plugins dialog, make sure the checkboxes for all the new plugins are
checked. Click Install.

Click through the installation dialog and restart NetBeans when finished.

Developing Scala applications

To create a NetBeans Scala Project, start by selecting the File → New Project menu item
or clicking the New Project button. In the pop-up dialog, select “Scala” under Cate-
gories and “Scala Application” under Projects, as shown in Figure 14-9. Click Next.

Figure 14-9. Creating a new NetBeans Scala project

Fill in the project name, location, etc., and click Finish.

Once the project is created, you can work with it using most of the same commands
you would use with a typical Java project. There are some differences. For example,
when you invoke the New item in the context menu, the submenu does not show items
for creating new Scala types. Instead, you have invoke the Other… menu item and work
through a dialog. This will be changed in a future release.

Despite some minor issues like this, the NetBeans Scala plugin is mature enough for
regular use.

Text Editors
The sbaz tool manages the scala-tool-support package that includes Scala plugins for
several editors, including Emacs, Vim, TextMate and others. Like sbaz, the scala-tool-
support package is also included with the language installation. See the directories in
scala-home/misc/scala-tool-support for the supported editors. Most of the editor-
specific directories contain instructions for installing the plugin. In other cases, consult
your editor’s instructions for installing third-party plugins.

Some of the packages are fairly immature. If you want to contribute to the Scala com-
munity, please consider improving the quality of the existing plugins or contributing
new plugins.

360 | Chapter 14: Scala Tools, Libraries, and IDE Support

At the time of this writing, there are several variations of a Scala “bundle”
for the TextMate editor, which is a popular text editor for Mac OS X.
These bundles are currently being managed by Paul Phillips on the
GitHub website. Hopefully, the best features of each bundle will be
unified into an “authoritative” bundle and integrated back into the
scala-tool-support package.

Test-Driven Development in Scala
One of the most important developer practices introduced in the last decade is Test-
Driven Development (TDD). The Scala community has created several tools to support
TDD.

If you work in a “pure” Java shop, consider introducing one or more of these Scala
testing tools to test-drive your Java code. This approach is a low-risk way to introduce
Scala to your environment, so you can gain experience with it before making the com-
mitment to Scala as your production code language. In particular, you might experi-
ment with ScalaTest (see “ScalaTest” next), which can be used with JUnit ([JUnit]) and
TestNG ([TestNG]). You might also consider ScalaCheck or Reductio (see “Scala-
Check” on page 365), which offer innovations that may not be available in Java testing
frameworks. All of the tools we describe here integrate with Java testing and build tools,
like JUnit, TestNG, various mocking libraries, Ant ([Ant]), and Maven ([Maven]). All
of them also offer convenient Scala DSLs for testing.

ScalaTest
Scala’s version of the venerable XUnit tool is ScalaTest, available at http://www.artima
.com/scalatest/.

You can drive your tests using the built-in Runner or use the provided integration with
JUnit or TestNG. ScalaTest also comes with an Ant task and it works with the Scala-
Check testing tool (described later).

Besides supporting the traditional XUnit-style syntax with test methods and assertions,
ScalaTest provides a Behavior-Driven Development ([BDD]) syntax that is becoming
increasingly popular. The ScalaTest website provides examples for these and other op-
tions.

Here is an example ScalaTest test for the simple Complex class we used in “The scalap,
javap, and jad Command-Line Tools” on page 350:

// code-examples/ToolsLibs/complex-test.scala

import org.scalatest.FunSuite

class ComplexSuite extends FunSuite {

 val c1 = Complex(1.2, 3.4)

Test-Driven Development in Scala | 361

http://github.com/paulp/scala-textmate/tree/master
http://www.artima.com/scalatest/
http://www.artima.com/scalatest/
http://www.artima.com/scalatest/

 val c2 = Complex(5.6, 7.8)

 test("addition with (0, 0)") {
 assert(c1 + Complex(0.0, 0.0) === c1)
 }

 test("subtraction with (0, 0)") {
 assert(c1 - Complex(0.0, 0.0) === c1)
 }

 test("addition") {
 assert((c1 + c2).real === (c1.real + c2.real))
 assert((c1 + c2).imaginary === (c1.imaginary + c2.imaginary))
 }

 test("subtraction") {
 assert((c1 - c2).real === (c1.real - c2.real))
 assert((c1 - c2).imaginary === (c1.imaginary - c2.imaginary))
 }
}

This particular example uses the “function value” syntax for each test that is provided
by the FunSuite parent trait. Each call to test receives as arguments a descriptive string
and a function literal with the actual test code.

The following commands compile complex.scala and complex-test.scala, putting the
class files in a build directory, and then run the tests. Note that we assume that scalat-
est-0.9.5.jar (the latest release at the time of this writing) is in the ../lib directory. The
downloadable distribution of the code examples is organized this way:

scalac -classpath ../lib/scalatest-0.9.5.jar -d build complex.scala complex-test.scala
scala -classpath build:../lib/scalatest-0.9.5.jar org.scalatest.tools.Runner \
 -p build -o -s ComplexSuite

(We used a \ to continue the long command on a second line.) The output is the
following:

Run starting. Expected test count is: 4
Suite Starting - ComplexSuite: The execute method of a nested suite is \
 about to be invoked.
Test Starting - ComplexSuite: addition with (0, 0)
Test Succeeded - ComplexSuite: addition with (0, 0)
Test Starting - ComplexSuite: subtraction with (0, 0)
Test Succeeded - ComplexSuite: subtraction with (0, 0)
Test Starting - ComplexSuite: addition
Test Succeeded - ComplexSuite: addition
Test Starting - ComplexSuite: subtraction
Test Succeeded - ComplexSuite: subtraction
Suite Completed - ComplexSuite: The execute method of a nested suite \
 returned normally.
Run completed. Total number of tests run was: 4
All tests passed.

Again, we wrapped the long output lines with a \.

362 | Chapter 14: Scala Tools, Libraries, and IDE Support

Specs
The Specs library ([ScalaSpecsTool]) is a Behavior-Driven Development ([BDD]) test-
ing tool for Scala. It is inspired by Ruby’s RSpec ([RSpec]). In a nutshell, the goal of
BDD is to recast traditional test syntax into a form that better emphasizes the role of
TDD as a process that drives design, which in turn should implement the require-
ments “specification.” The syntax of traditional TDD tools, like the XUnit frameworks,
tend to emphasize the testing role of TDD. With the syntax realigned, it is believed that
the developer will be more likely to stay focused on the primary role of TDD: driving
application design.

You can also find documentation on Specs at [ScalaTools].

We have already used Specs in several examples in the book, e.g., ButtonObserver
Spec in “Traits As Mixins” on page 76. Here is another example for the simple
Complex class we showed previously:

// code-examples/ToolsLibs/complex-spec.scala

import org.specs._

object ComplexSpec extends Specification {
 "Complex addition with (0.0, 0.0)" should {
 "return a number N' that is identical to original number N" in {
 val c1 = Complex(1.2, 3.4)
 (c1 + Complex(0.0, 0.0)) mustEqual c1
 }
 }
 "Complex subtraction with (0.0, 0.0)" should {
 "return a number N' that is identical to original number N" in {
 val c1 = Complex(1.2, 3.4)
 (c1 - Complex(0.0, 0.0)) mustEqual c1
 }
 }
 "Complex addition" should {
 """return a new number where
 the real and imaginary parts are the sums of the
 input values' real and imaginary parts, respectively.""" in {
 val c1 = Complex(1.2, 3.4)
 val c2 = Complex(5.6, 7.8)
 (c1 + c2).real mustEqual (c1.real + c2.real)
 (c1 + c2).imaginary mustEqual (c1.imaginary + c2.imaginary)
 }
 }
 "Complex subtraction" should {
 """return a new number where
 the real and imaginary parts are the differences of the
 input values' real and imaginary parts, respectively.""" in {
 val c1 = Complex(1.2, 3.4)
 val c2 = Complex(5.6, 7.8)
 (c1 - c2).real mustEqual (c1.real - c2.real)
 (c1 - c2).imaginary mustEqual (c1.imaginary - c2.imaginary)
 }

Test-Driven Development in Scala | 363

 }
}

An object that extends Specification is the analog of a test suite. The next level of
grouping, e.g., the clause "Complex addition with (0.0, 0.0)" should {...}, encap-
sulates the information at the level of the type being tested, or perhaps a “cluster” of
behaviors that go together for the type.

The next level clause, e.g., the clause "return a number N' that is identical to
original number N" in {...}, is called an “example” in BDD terminology. It is analo-
gous to a single test. Like typical XUnit frameworks, the testing is done using “repre-
sentative examples,” rather than by doing an exhaustive exploration of the entire
“space” of possible states. Hence, the term “example.” (However, see the discussion
of ScalaCheck next.)

Statements like (c1 + Complex(0.0, 0.0)) mustEqual c1 are called “expectations.”
They do the actual verifications that conditions are satisfied. Hence, expectations are
analogous to assertions in XUnit tools.

There are several ways to run your specs. After compiling complex-spec.scala earlier,
we can run the specs as follows:

scala -classpath ../lib/specs-1.4.3.jar:build ComplexSpec

Here, as before, we assume the Specs JAR is in the ../lib directory and we assume the
compiled class files are in the build directory. We get the following output:

Specification "ComplexSpec"
 Complex addition with (0.0, 0.0) should
 + return a number N' that is identical to original number N

 Total for SUT "Complex addition with (0.0, 0.0)":
 Finished in 0 second, 0 ms
 1 example, 1 expectation, 0 failure, 0 error

 Complex subtraction with (0.0, 0.0) should
 + return a number N' that is identical to original number N

 Total for SUT "Complex subtraction with (0.0, 0.0)":
 Finished in 0 second, 0 ms
 1 example, 1 expectation, 0 failure, 0 error

 Complex addition should
 + return a new number where
 the real and imaginary parts are the sums of the
 input values real and imaginary parts, respectively.

 Total for SUT "Complex addition":
 Finished in 0 second, 0 ms
 1 example, 2 expectations, 0 failure, 0 error

 Complex subtraction should
 + return a new number where
 the real and imaginary parts are the differences of the

364 | Chapter 14: Scala Tools, Libraries, and IDE Support

 input values real and imaginary parts, respectively.

 Total for SUT "Complex subtraction":
 Finished in 0 second, 0 ms
 1 example, 2 expectations, 0 failure, 0 error

Total for specification "ComplexSpec":
Finished in 0 second, 37 ms
4 examples, 6 expectations, 0 failure, 0 error

Note that the strings in the specification are written in a form that reads somewhat like
a requirements specification:

...
Complex addition with (0.0, 0.0) should
+ return a number N' that is identical to original number N
...

There are many ways to run specifications, including using an Ant task or using the
built-in integration with ScalaTest or JUnit. JUnit is the best approach for running
specifications in some IDEs. These and other options are described in the User’s Guide
at http://code.google.com/p/specs/wiki/RunningSpecs.

ScalaCheck
ScalaCheck ([ScalaCheckTool] is a Scala port of the innovative Haskell QuickCheck
([QuickCheck]) tool that supports Automated Specification-Based Testing, sometimes
called type-based “property” testing in the Haskell literature (e.g., [O’Sullivan2009]).

ScalaCheck can be installed using sbaz, i.e., sbaz install scalacheck.

Using ScalaCheck (or QuickCheck for Haskell), conditions for a type are specified that
should be true for any instances of the type. The tool tries the conditions using auto-
matically generated instances of the type and verifies that the conditions are satisfied.

Here is a ScalaCheck test for Complex:

// code-examples/ToolsLibs/complex-check-script.scala

import org.scalacheck._
import org.scalacheck.Prop._

def toD(i: Int) = i * .1

implicit def arbitraryComplex: Arbitrary[Complex] = Arbitrary {
 Gen.sized {s =>
 for {
 r <- Gen.choose(-toD(s), toD(s))
 i <- Gen.choose(-toD(s), toD(s))
 } yield Complex(r, i)
 }
}

object ComplexSpecification extends Properties("Complex") {

Test-Driven Development in Scala | 365

http://code.google.com/p/specs/wiki/RunningSpecs

 def additionTest(a: Complex, b: Complex) =
 (a + b).real.equals(a.real + b.real) &&
 (a + b).imaginary.equals(a.imaginary + b.imaginary)

 def subtractionTest(a: Complex, b: Complex) =
 (a - b).real.equals(a.real - b.real) &&
 (a - b).imaginary.equals(a.imaginary - b.imaginary)

 val zero = Complex(0.0, 0.0)

 specify("addition with (0,0)", (a: Complex) => additionTest(a, zero))
 specify("subtraction with (0,0)", (a: Complex) => subtractionTest(a, zero))

 specify("addition", (a: Complex, b: Complex) => additionTest(a,b))
 specify("subtraction", (a: Complex, b: Complex) => subtractionTest(a,b))
}
ComplexSpecification.check

The toD function just converts an Int to a Double by dividing by 0.1. It’s useful to convert
an Int index provided by ScalaCheck into Double values that we will use to construct
Complex instances.

We also need an implicit conversion visible in the scope of the test that generates
new Complex values. The arbitraryComplex function provides this generator. An
Arbitrary[Complex] object (part of the ScalaCheck API) is returned by this method.
ScalaCheck invokes another API method, Gen[Complex].sized. We provide a function
literal that assigns a passed-in Int value to a variable s. We then use a for comprehen-
sion to return Complex numbers with real and imaginary parts that range from -toD(s) to
toD(s) (i.e., -(s * .1) to (s * .1)). Fortunately, you don’t have to define implicit
conversions or generators for most of the commonly used Scala and Java types.

The most interesting part is the definition and use of ComplexSpecification. This object
defines a few helper methods, additionTest and subtractionTest, that each return
true if the conditions they define are true. For additionTest, if a new Complex number
is the sum of two other Complex numbers, then its real part must equal the sum of the
real parts of the two original numbers. Likewise, a similar condition must hold for the
imaginary part of the numbers. For subtractionTest, the same conditions must hold
with subtraction substituted for addition.

Next, two specify clauses assert that the addition and subtraction conditions should
hold for any Complex number when Complex(0.0, 0.0) is added to it or subtracted from
it, respectively. Two more specify classes assert that the conditions should also hold
for any pair of Complex numbers.

Finally, when ComplexSpecification.check is called, test runs are made with different
values of Complex numbers, verifying that the properties specified are valid for each
combination of numbers passed to the helper methods.

We can run the check using the following command (once again assuming that
Complex is already compiled into the build directory):

366 | Chapter 14: Scala Tools, Libraries, and IDE Support

scala -classpath ../lib/scalacheck.jar:build complex-check-script.scala

It produces the following output:

+ Complex.addition with (0,0): OK, passed 100 tests.
+ Complex.addition: OK, passed 100 tests.
+ Complex.subtraction with (0,0): OK, passed 100 tests.
+ Complex.subtraction: OK, passed 100 tests.

Note that ScalaCheck tried each specify case with 100 different inputs.

It’s important to understand the value that ScalaCheck delivers. Rather than going
through the process of writing enough “example” test cases with representative data,
which is tedious and error-prone, we define reusable “generators,” like the arbitrary
Complex function, to produce an appropriate range of instances of the type under test.
Then we write property specifications that should hold for any instances. ScalaCheck
does the work of testing the properties against a random sample of the instances pro-
duced by the generators.

You can find more examples of ScalaCheck usage in the online code examples. Some
of the types used in the payroll example in “Internal DSLs” on page 218 were tested
with ScalaCheck. These tests were not shown in “Internal DSLs” on page 218.

Finally, note that there is another port of QuickCheck called Reductio. It is part of the
Functional Java project ([FunctionalJava]). Reductio is less widely used than Scala-
Check, but it offers a “native” Java API as well as a Scala API, so it would be more
convenient for “pure” Java teams.

Other Notable Scala Libraries and Tools
While Scala benefits from the rich legacy of Java and .NET libraries, there is a growing
collection of libraries written specifically for Scala. Here we discuss some of the more
notable ones.

Lift
Lift is the leading web application framework written in Scala. It recently reached “1.0”
status. Lift has been used for a number of commercial websites. You can also find
documentation on the Lift website.

Other web frameworks include Sweet, Pinky, and Slinky.

Scalaz
Scalaz is a library that fills in gaps in the standard library. Among its features are en-
hancements to several core Scala types, such as Boolean, Unit, String, and Option, plus
support for functional control abstractions, such as FoldLeft, FoldRight, and Monad, that
expand upon what is available in the standard library.

Other Notable Scala Libraries and Tools | 367

http://liftweb.net/
http://code.google.com/p/sweetscala/
http://bitbucket.org/pk11/pinky/wiki/Home
http://code.google.com/p/slinky2/
http://code.google.com/p/scalaz/

Scalax
Scalax is another third-party library effort to supplement the Scala core library.

MetaScala
MetaScala is an experimental metaprogramming library for Scala. Metaprogramming
features tend to be weaker in statically typed languages than in dynamically typed lan-
guages. Also, the JVM and .NET CLR impose their own constraints on metaprogram-
ming.

Many of the features of Scala obviate the need for metaprogramming, compared to
languages like Ruby, but sometimes metaprogramming is still useful. MetaScala at-
tempts to address those needs more fully than Scala’s built-in reflection support.

JavaRebel
JavaRebel is a commercial tool that permits dynamic reloading of classes in a running
JVM (written in any language), beyond the limited support provided natively by the
“HotSwap” feature of the JVM. JavaRebel is designed to offer the developer faster
turnaround for changes, providing an experience more like the rapid turnaround that
users of dynamic languages enjoy. JavaRebel can be used with Scala code as well.

Miscellaneous Smaller Libraries
Finally, Table 14-5 is a list of several Scala-specific libraries you might find useful for
your applications.

Table 14-5. Miscellaneous Scala libraries

Name Description and URL

Kestrel A tiny, very fast queue system (http://github.com/robey/kestrel/tree/master).

ScalaModules Scala DSL to ease OSGi development (http://code.google.com/p/scalamodules/).

Configgy Managing configuration files and logging for “daemons” written in Scala (http://www.lag.net/configgy/).

scouchdb Scala interface to CouchDB (http://code.google.com/p/scouchdb/).

Akka A project to implement a platform for building fault-tolerant, distributed applications based on REST, Actors,
etc. (http://akkasource.org/).

scala-query A type-safe database query API for Scala (http://github.com/szeiger/scala-query/tree/master).

We’ll discuss using Scala with several well-known Java libraries after we discuss Java
interoperability, next.

368 | Chapter 14: Scala Tools, Libraries, and IDE Support

http://scalax.scalaforge.org/
http://www.assembla.com/wiki/show/metascala
http://www.zeroturnaround.com/javarebel/
http://github.com/robey/kestrel/tree/master
http://code.google.com/p/scalamodules/
http://www.lag.net/configgy/
http://code.google.com/p/scouchdb/
http://akkasource.org/
http://github.com/szeiger/scala-query/tree/master

Java Interoperability
Of all the alternative JVM languages, Scala’s interoperability with Java source code is
among the most seamless. This section begins with a discussion of interoperability with
code written in Java. Once you understand the details, they can be generalized to ad-
dress interoperability with other JVM languages, such as JRuby or Groovy. For exam-
ple, if you already know how to use JRuby and Java together, and you know how to
use Java and Scala together, then you can generalize to using JRuby and Scala together.

Because Scala syntax is primarily a superset of Java syntax, invoking Java code from
Scala is usually straightforward. Going the other direction requires that you understand
how some Scala features are encoded in ways that satisfy the JVM specification. We
discuss several of the interoperability issues here. [Spiewak2009a] and [Oder-
sky2008] provide additional information.

Java and Scala Generics
We have seen many examples of Scala code that uses Java types, such as
java.lang.String and various java collection classes. Instantiating Java generic types
is straightforward in Scala (since Scala version 2.7.0). Consider the following very sim-
ple Java generic class, JStack:

// code-examples/ToolsLibs/JStack.java

import java.util.*;

public class JStack<T> {
 private List<T> stack = new ArrayList<T>();
 public void push(T t) {
 stack.add(t);
 }
 public T pop() {
 return stack.remove(stack.size() - 1);
 }
}

We can instantiate it from Scala, specifying the type parameter, as shown in Exam-
ple 14-1.

Example 14-1. A Scala “spec” to test the simple Java stack

// code-examples/ToolsLibs/JStack-spec.scala

import org.specs._

object JStackSpec extends Specification {
 "Calling a Java generic type from Scala" should {
 "Support parameterization" in {
 val js = new JStack[String]
 js must notBe(null) // Dummy check...
 }

Java Interoperability | 369

 "Support invoking the the type's methods" in {
 val js = new JStack[String]
 js.push("one")
 js.push("two")
 js.pop() mustEqual "two"
 js.pop() mustEqual "one"
 }
 }
}

Since Scala version 2.7.2, you can also use Scala generics from Java. Consider the fol-
lowing JUnit 4 test, which shows some of the idiosyncrasies you might encounter:

// code-examples/ToolsLibs/SMapTest.java

import org.junit.*;
import static org.junit.Assert.*;
import scala.*;
import scala.collection.mutable.LinkedHashMap;

public class SMapTest {
 static class Name {
 public String firstName;
 public String lastName;

 public Name(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 }

 LinkedHashMap<Integer, Name> map;

 @Before
 public void setup() {
 map = new LinkedHashMap<Integer, Name>();
 map.update(1, new Name("Dean", "Wampler"));
 map.update(2, new Name("Alex", "Payne"));
 }

 @Test
 public void usingMapGetWithWarnings() {
 assertEquals(2, map.size());
 Option<Name> n1 = map.get(1); // warning
 Option<Name> n2 = map.get(2); // warning
 assertTrue(n1.isDefined());
 assertTrue(n2.isDefined());
 assertEquals("Dean", n1.get().firstName);
 assertEquals("Alex", n2.get().firstName);
 }

 @Test
 public void usingMapGetWithoutWarnings() {
 assertEquals(2, map.size());
 Option<?> n1 = map.get(1);

370 | Chapter 14: Scala Tools, Libraries, and IDE Support

 Option<?> n2 = map.get(2);
 assertTrue(n1.isDefined());
 assertTrue(n2.isDefined());
 assertEquals("Dean", ((Name) n1.get()).firstName);
 assertEquals("Alex", ((Name) n2.get()).firstName);
 }
}

On Unix-like systems, it is compiled with the following command line:

javac -Xlint:unchecked \
 -cp $SCALA_HOME/lib/scala-library.jar:$JUNIT_HOME/junit-4.4.jar SMapTest.java

(Again, we wrapped the long line with \.) SCALA_HOME and JUNIT_HOME are the
installation directories of Scala and JUnit, respectively.

The SMapTest class defines a nested Name class that is used as the “value” type in a
scala.collection.mutable.LinkedHashMap. For simplicity, Name has public firstName
and lastName fields and a constructor.

The setup method creates a new LinkedHashMap<Integer,Name> and inserts two key-
value pairs. The two tests, usingMapGetWithWarnings and usingMapGetWithoutWarnings,
exercise the Java-Scala interoperability the same way. However, the first test has two
compile-time warnings, indicated by the // warning comments, while the second test
compiles without warnings:

SMapTest.java:29: warning: [unchecked] unchecked conversion
found : scala.Option
required: scala.Option<SMapTest.Name>
 Option<Name> n1 = map.get(1); // warning
 ^
SMapTest.java:30: warning: [unchecked] unchecked conversion
found : scala.Option
required: scala.Option<SMapTest.Name>
 Option<Name> n2 = map.get(2); // warning
 ^
2 warnings

The warnings occur because of type erasure. In the compiled Scala library, the return
type of Map.get is Option with no type parameter, or effectively Option<Object>. So we
get warnings for the conversion to Option<Name>.

The second test, usingMapGetWithoutWarnings, has no warnings, because we assign the
values returned by Map.get to Option<?> and then do an explicit cast to Name when we
call Option.get in the final two assertions.

Using Scala Functions in Java
Continuing with our previous SMapTest example, we can explore invoking Scala code
from Java where Scala functions are required:

// code-examples/ToolsLibs/SMapTestWithFunctions.java

Java Interoperability | 371

import org.junit.*;
import static org.junit.Assert.*;
import scala.*;
import scala.collection.mutable.LinkedHashMap;
import static scala.collection.Map.Projection;

public class SMapTestWithFunctions {
 static class Name {
 public String firstName;
 public String lastName;

 public Name(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public static Name emptyName = new Name("","");

 public static Function0<Name> empty = new Function0<Name>() {
 public Name apply() { return emptyName; }

 public int $tag() { return 0; }
 };
 }

 LinkedHashMap<Integer, Name> map;

 @Before
 public void setup() {
 map = new LinkedHashMap<Integer, Name>();
 map.update(1, new Name("Dean", "Wampler"));
 map.update(2, new Name("Alex", "Payne"));
 }

 @Test
 public void usingMapGetOrElse() {
 assertEquals(2, map.size());
 assertEquals("Dean", ((Name) map.getOrElse(1, Name.empty)).firstName);
 assertEquals("Alex", ((Name) map.getOrElse(2, Name.empty)).firstName);
 }

 Function1<Integer, Boolean> filter = new Function1<Integer, Boolean>() {
 public Boolean apply(Integer i) { return i.intValue() <= 1; }

 public <A> Function1<A,Boolean> compose(Function1<A,Integer> g) {
 return Function1$class.compose(this, g);
 }

 public <A> Function1<Integer,A> andThen(Function1<Boolean,A> g) {
 return Function1$class.andThen(this, g);
 }

 public int $tag() { return 0; }
 };

372 | Chapter 14: Scala Tools, Libraries, and IDE Support

 @Test
 public void usingFilterKeys() {
 assertEquals(2, map.size());
 Projection<Integer, Name> filteredMap =
 (Projection<Integer, Name>) map.filterKeys(filter);
 assertEquals(1, filteredMap.size());
 assertEquals("Dean", filteredMap.getOrElse(1, Name.empty).firstName);
 assertEquals("", filteredMap.getOrElse(2, Name.empty).firstName);
 }
}

The SMapTestWithFunctions class has its own Name class that adds a static emptyName
object and a static scala.Function0 object empty, which defines apply to return
emptyName. Note that it is also necessary to define the $tag method that was discussed
previously in “The scalap, javap, and jad Command-Line Tools” on page 350.

The empty function object is needed when we use Map.getOrElse in the test method,
usingMapGetOrElse. The signature of getOrElse is the following:

def getOrElse[B2 >: B](key : A, default : => B2) : B2

Where A is the key type parameter, B is the value type parameter, and B2 is a supertype
of B or the same as B. The second default argument is a by-name parameter, which we
discussed in Chapter 8. Note that by-name parameters are implemented as scala.Func
tion0 objects. So, we can’t simply pass in the static object emptyName.

The second test, usingFilterKeys, requires a Function1 object, which has an apply
method that takes one argument. We use this Function1 object as a filter passed to
Map.filterKeys.

We define the filter before the test. The Java code here is considerably more involved
than the equivalent Scala code would be! Not only do we have to define the apply and
$tag methods, we must also define methods used for function composition, compose
and andThen. Fortunately, we can delegate to objects that are already in the Scala library,
as shown. Note that other FunctionN types, for N equals 2 to 22, have other methods
that would have to be implemented using similar “boilerplate.” For example, these
types each have a curry method.

Finally, recall that in “Companion Objects and Java Static Methods” on page 133, we
discussed that methods defined in companion objects are not visible as static methods
to Java code. For example, main methods defined in companion objects can’t be used
to run the application. Instead, you should define such methods in singleton objects.

So, using Scala function objects from Java can be challenging. If you find it necessary
to use them frequently, you could define Java utility classes that handle the boilerplate
for all the methods except apply.

Java Interoperability | 373

JavaBean Properties
We saw in Chapter 5 that Scala does not follow the JavaBeans ([JavaBeansSpec]) con-
ventions for field reader and writer methods, for reasons described in “When Accessor
Methods and Fields Are Indistinguishable: The Uniform Access Princi-
ple” on page 123. However, there are times when you need JavaBeans accessor
methods. For example, you need them when you want your Scala instances to be con-
figurable by a dependency injection mechanism, like the one provided by the Spring
Framework ([SpringFramework]). You may also need JavaBeans accessor methods for
some IDEs that do bean “introspection.”

Scala solves this problem with an annotation that you can apply to a field,
@scala.reflect.BeanProperty, which tells the compiler to generate JavaBeans-style
getter and setter methods. We introduced this annotation in “Annota-
tions” on page 289.

Recall the Complex class we saw previously. Now we add the annotation to each con-
structor argument, which is a field in the case class:

// code-examples/ToolsLibs/complex-javabean.scala

case class ComplexBean(
 @scala.reflect.BeanProperty real: Double,
 @scala.reflect.BeanProperty imaginary: Double) {

 def +(that: ComplexBean) =
 new ComplexBean(real + that.real, imaginary + that.imaginary)
 def -(that: ComplexBean) =
 new ComplexBean(real - that.real, imaginary - that.imaginary)
}

If you compile this class, then decompile it with javap -classpath ... ComplexBean,
you get the following output:

public class ComplexBean extends java.lang.Object
 implements scala.ScalaObject,scala.Product,java.io.Serializable{
 public ComplexBean(double, double);
 public java.lang.Object productElement(int);
 public int productArity();
 public java.lang.String productPrefix();
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public int hashCode();
 public int $tag();
 public ComplexBean $minus(ComplexBean);
 public ComplexBean $plus(ComplexBean);
 public double imaginary();
 public double real();
 public double getImaginary();
 public double getReal();
}

Now compare this output with the result of decompiling the original Complex.class file:

374 | Chapter 14: Scala Tools, Libraries, and IDE Support

public class Complex extends java.lang.Object
 implements scala.ScalaObject,scala.Product,java.io.Serializable{
 public Complex(double, double);
 public java.lang.Object productElement(int);
 public int productArity();
 public java.lang.String productPrefix();
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public int hashCode();
 public int $tag();
 public Complex $minus(Complex);
 public Complex $plus(Complex);
 public double imaginary();
 public double real();
}

The order of the methods shown may be different when you run javap on these files.
We reordered them so the two listings would match as closely as possible. Note that
the only differences are the names of the classes and the presence of getImaginary and
getReal methods in the ComplexBean case. We would also have corresponding setter
methods if the real and imaginary fields were declared as vars instead of vals.

The Scaladoc page for @BeanProperty (version 2.7) says that you can’t
call the bean setter methods from Scala. You can call them, but as the
Scaladoc page goes on to say, you should use the Scala-style writer (and
reader) methods instead.

AnyVal Types and Java Primitives
Notice also in the previous Complex example that the Doubles were converted to Java
primitive doubles. All the AnyVal types are converted to their corresponding Java prim-
itives. We showed the mapping in Table 7-3. In particular, note that Unit is mapped to
void.

Scala Names in Java Code
As we discussed in Chapter 3, Scala allows more flexible identifiers, e.g., operator
characters like *, <, etc. These characters are encoded (or “mangled,” if you prefer) to
satisfy the tighter constraints of the JVM specification. They are translated as shown
in Table 14-6 (adapted from [Spiewak2009a]).

Table 14-6. Encoding of operator characters

Operator Encoding

= $eq

> $greater

< $less

+ $plus

Java Interoperability | 375

Operator Encoding

- $minus

* $times

/ $div

\ $bslash

| $bar

! $bang

? $qmark

: $colon

% $percent

^ $up

& $amp

@ $at

$hash

~ $tilde

You can see this at work in the following contrived trait, where each character is used
to declare an abstract method that takes no arguments and returns Unit:

// code-examples/ToolsLibs/all-op-chars.scala

trait AllOpChars {
 def == : Unit // eqeq
 def > : Unit // $greater
 def < : Unit // $less
 def + : Unit // $plus
 def - : Unit // $minus
 def * : Unit // $times
 def / : Unit // $div
 def \ : Unit // $bslash
 def | : Unit // $bar
 def ! : Unit // $bang
 def ? : Unit // $qmark
 def :: : Unit // $colon$colon
 def % : Unit // $percent
 def ^ : Unit // $up
 def & : Unit // $amp
 def @@ : Unit // atat
 def ## : Unit // $hash$hash
 def ~ : Unit // $tilde
}

Note that we doubled up some of the characters to get them to compile as method
names, where using single characters would have been ambiguous. Compiling this file
and decompiling the resulting class file with javap AllOpChars yields the following Java

376 | Chapter 14: Scala Tools, Libraries, and IDE Support

interface. (We have rearranged the output order of the methods to match the order in
the original Scala file.)

Compiled from "all-op-chars.scala"
public interface AllOpChars{
 public abstract void eqeq();
 public abstract void $greater();
 public abstract void $less();
 public abstract void $plus();
 public abstract void $minus();
 public abstract void $times();
 public abstract void $div();
 public abstract void $bslash();
 public abstract void $bar();
 public abstract void $bang();
 public abstract void $qmark();
 public abstract void $colon$colon();
 public abstract void $percent();
 public abstract void $up();
 public abstract void $amp();
 public abstract void atat();
 public abstract void $hash$hash();
 public abstract void $tilde();
}

To conclude, interoperability between Java and Scala works very well, but there are a
few things you must remember when invoking Scala code from Java. If you’re uncertain
about how a Scala identifier is encoded or a Scala method is translated to valid byte
code, use javap to find out.

Java Library Interoperability
This section specifically considers interoperability with several important Java frame-
works: AspectJ, the Spring Framework, Terracotta, and Hadoop. Because they are
widely used in “enterprise” and Internet Java applications, successful interoperability
with Scala is important.

AspectJ
AspectJ ([AspectJ]) is an extension of Java that supports aspect-oriented program-
ming (AOP), also known as aspect-oriented software development ([AOSD]). The goal
of AOP is to enable systemic changes of the same kind across many modules, while
avoiding copying and pasting the same code over and over into each location. Avoiding
this duplication not only improves productivity, it greatly reduces bugs.

For example, if you want all field changes to all “domain model” objects to be persisted
automatically after the changes occur, you can write an aspect that observes those
changes and triggers a persistence write after each change.

Java Library Interoperability | 377

AspectJ supports AOP by providing a pointcut language for specifying in a declarative
way all the “execution points” in a program for which a particular behavior modifica-
tion (called advice) is required. In AspectJ parlance, each execution point is called a
join point, and a particular query over join points is a pointcut. Hence the pointcut
language is a query language, of sorts. For a given pointcut, AspectJ incorporates the
desired behavior modifications into each join point. Manual insertion of these changes
is not required. An aspect encapsulates pointcuts and advices, much the way a class
encapsulates member fields and methods.

For a detailed introduction to AspectJ with many practical examples, refer to [Lad-
dad2009].

There are two issues that must be considered when using AspectJ with Scala. The first
issue is how to reference Scala execution points using AspectJ’s pointcut language, e.g.,
Scala types and methods. The second issue is how to invoke Scala code as advice.

Let’s look at an aspect that logs method calls to the Complex class we used previously
in this chapter. We’ll add a package declaration this time to provide some scope:

// code-examples/ToolsLibs/aspectj/complex.scala

package example.aspectj

case class Complex(real: Double, imaginary: Double) {
 def +(that: Complex) =
 new Complex(real + that.real, imaginary + that.imaginary)
 def -(that: Complex) =
 new Complex(real - that.real, imaginary - that.imaginary)
}

Here is an object that uses Complex:

// code-examples/ToolsLibs/aspectj/complex-main.scala

package example.aspectj

object ComplexMain {
 def main(args: Array[String]) {
 val c1 = Complex(1.0, 2.0)
 val c2 = Complex(3.0, 4.0)
 val c12 = c1 + c2
 println(c12)
 }
}

Next, here is an AspectJ aspect that defines one pointcut for the creation of Complex
instances and another pointcut for invocations of the + method:

378 | Chapter 14: Scala Tools, Libraries, and IDE Support

// code-examples/ToolsLibs/aspectj/LogComplex.aj

package example.aspectj;

public aspect LogComplex {
 public pointcut newInstances(double real, double imag):
 execution(Complex.new(..)) && args(real, imag);

 public pointcut plusInvocations(Complex self, Complex other):
 execution(Complex Complex.$plus(Complex)) && this(self) && args(other);

 before(double real, double imag): newInstances(real, imag) {
 System.out.println("new Complex(" + real + "," + imag + ") called.");
 }

 before(Complex self, Complex other): plusInvocations(self, other) {
 System.out.println("Calling " + self + ".+(" + other + ")");
 }

 after(Complex self, Complex other) returning(Complex c):
 plusInvocations(self, other) {
 System.out.println("Complex.+ returned " + c);
 }
}

We won’t explain all the details of AspectJ syntax here. See the AspectJ document at
[AspectJ] and [Laddad2009] for those details. We’ll limit ourselves to a “conceptual”
overview of this aspect.

The first pointcut, newInstances, matches on executions of the constructor calls, using
the syntax Complex.new to refer to the constructor. We expect double arguments to the
constructor call. As we saw previously, scala.Double occurrences are converted to Java
primitive doubles when generating byte code. The args clause “binds” the values of the
arguments passed in, so we can refer to them in advice.

The second pointcut, plusInvocations, matches on “executions” of the + method,
which is actually $plus in the byte code. The self and other parameters are bound to
the object on which the + method is invoked (using the this clause) and the argument
to it (using the args clause), respectively.

The first before advice is executed for the newInstances pointcut, that is, before we
actually enter the constructor. We “log” the call, displaying the actual real and imagi-
nary values passed in.

The next before advice is executed for the plusInvocations pointcut, that is, before the
+ method is executed. We log the value of self (i.e., this instance) and the other
number.

Finally, an after returning advice is also executed for the plusInvocations pointcut,
that is, after the + method returns. We capture the return value in the variable c and
we log it.

Java Library Interoperability | 379

If you have AspectJ installed in an aspectj-home directory, you can compile this file as
follows:

ajc -classpath .:aspectj-home/lib/aspectjrt.jar:../lib/scala-library.jar \
 aspectj/LogComplex.aj

This is one line; we used the \ to indicate a line wrap. To run this code with the
LogComplex aspect, we use load-time weaving. We’ll invoke Java with an agent that
“weaves” the advice from LogComplex into Complex. To use load-time weaving, we also
need the following configuration file, META-INF/aop.xml:

<!-- code-examples/ToolsLibs/META-INF/aop.xml -->

<aspectj>
 <aspects>
 <aspect name="example.aspectj.LogComplex" />
 <include within="example.aspectj.*" />
 </aspects>

 <weaver options="-verbose">
 <dump within="example.aspectj.*" beforeandafter="true">
 <include within="example.aspectj.*" />
 </dump>
 </weaver>
</aspectj>

(The META-INF directory should be on the class path; we’ll assume it’s in the current
working directory.) This file tells the weaver which aspects to use (the aspect tag) and
which classes to target for weaving (the include tag), and it also enables verbose output,
which is useful for debugging purposes. Finally, we can run the application with the
following command:

java -classpath .:aspectj-home/lib/aspectjrt.jar:../lib/scala-library.jar \
 -javaagent:aspectj-home/lib/aspectjweaver.jar example.aspectj.ComplexMain

You get several lines of messages logging the weaving process. The output ends with
these lines:

new Complex(1.0,2.0) called.
new Complex(3.0,4.0) called.
Calling Complex(1.0,2.0).+(Complex(3.0,4.0))
new Complex(4.0,6.0) called.
Complex.+ returned Complex(4.0,6.0)
Complex(4.0,6.0)

All but the last line were output by LogComplex. We added this additional behavior
without manually inserting these statements in Complex itself!

Recall we said that the second issue you might encounter when using AspectJ is how
to invoke Scala code from advice. In our LogComplex aspect, the statements inside our
different before and after advices are really just Java code. Therefore, we can just as
easily invoke Scala code, applying the same lessons we have already learned for invoking
Scala from Java.

380 | Chapter 14: Scala Tools, Libraries, and IDE Support

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Scala traits almost replace aspects. We saw in Chapters 4 and 13 how you can construct
traits that modify the behavior of other traits, then mix the behaviors together when
you create new classes or instances. This powerful technique lets you implement a form
of aspect advice. However, Scala doesn’t have a pointcut language, like AspectJ. When
you need to affect a set of join points that don’t share a common supertype, you’ll need
the capabilities of AspectJ. However, if you find yourself in that situation, you should
consider if you can refactor your code to extract a common trait that provides the
“hooks” you need for advice implemented using traits.

The Spring Framework
The Spring Framework (see [SpringFramework]) is an open source, modular Java
enterprise framework that provides a “pure” Java AOP API, integrated support for
AspectJ, a dependency injection (DI) container, uniform and well-designed APIs for
invoking a variety of other Java third-party APIs, and additional components for
security, web development, etc.

Here we focus on dependency injection, as interoperability issues with the other parts
of the Spring Framework boil down to either Java or AspectJ issues, which we covered
earlier.

We discussed the concept of DI in “Dependency Injection in Scala: The Cake Pat-
tern” on page 334, where we showed elegant patterns for injecting dependencies using
Scala itself. However, if you are in a mixed Java/Scala environment, it might be neces-
sary to use a DI framework like the one provided by Spring to manage dependencies.

In Spring DI, dependencies are specified using a combination of XML configuration
files and source-code annotations. The Spring API resolves these dependencies as
classes are instantiated. Spring expects these classes to follow JavaBean conventions
(see [JavaBeansSpec]). Well-designed classes will only depend on abstractions, i.e., Java
interfaces or Scala traits, and the concrete instances satisfying those dependencies will
be given to the bean through constructor arguments or through JavaBean setter meth-
ods. Hence, if you use Spring DI with Scala classes, you will need to use the
@scala.reflect.BeanProperty annotation when you use setter injection. The annota-
tion is not needed when you use constructor injection.

Prefer constructor injection, when possible. Not only does this choice
eliminate the need to use the @BeanProperty annotation, it leaves each
instances in a known good state when the construction process is
finished.

However, if you inject dependencies into Scala objects, you must use setter injection,
as you have no way to define constructor parameters and you have no control over the
construction process.

Java Library Interoperability | 381

One other point; remember that Spring will expect Java-compatible names, so you must
use encoded names for methods and objects, as needed.

Here is an example that illustrates “wiring together” objects with Spring:

// code-examples/ToolsLibs/spring/object-bean.scala

package example.spring

case class NamedObject(name: String)

trait Factory {
 @scala.reflect.BeanProperty
 var nameOfFactory = "unknown"

 def make(name: String): AnyRef
}

object NamedObjectFactory extends Factory {
 def make(name: String) = NamedObject(name)
}

case class FactoryUsingBean(factory: Factory)

The case class FactoryUsingBean is a simple type with a dependency on a Factory ab-
straction that we want to inject using constructor injection.

The trait Factory defines the factory abstraction. It has a make method to create instances
of some kind. To demonstrate setter injection on objects, we also give it a nameOf
Factory field. This will demonstrate object dependency injection because the concrete
subtype we will actually use, NamedObjectFactory, is an object.

Scala requires us to initialize nameOfFactory with a value, but we will use Spring to set
the real value. We have to use the @BeanProperty annotation to generate the setNameOf
Factory method Spring will expect to find.

The concrete make method in NamedObjectFactory creates a new NamedObject. It is a
simple case class with a name field.

Note that none of these types depend on the Spring API. You can compile this file
without any Spring JAR files.

Next, we define the dependency “wiring” using a standard Spring XML configuration
file:

<!-- code-examples/ToolsLibs/spring/scala-spring.xml -->

<beans xmlns=""
 xmlns:xsi=""
 xsi:schemaLocation="
 ">

 <bean id="factory" class="example.spring.NamedObjectFactory$">
 <property name="nameOfFactory" value="Factory for Named Objects" />
 </bean>

382 | Chapter 14: Scala Tools, Libraries, and IDE Support

 <bean id="factoryUsingBean" class="example.spring.FactoryUsingBean">
 <constructor-arg ref="factory" />
 </bean>
</beans>

We define two beans. Our factory is given the ID factory. The “class” is actually the
object NamedObjectFactory. Note that we have to append a $ to the end of the name,
the actual name of the object in the byte code.

The property tag sets the value of nameOfFactory. We can’t control instantiation of
objects, so we have to inject the correct dependency after construction completes.

The second bean is our simple FactoryUsingBean. Since this is a class, we can use
constructor injection. The constructor tag specifies that the factory bean is used to
satisfy the dependency at construction time.

Finally, here is a script that uses these types to demonstrate Spring DI with Scala:

// code-examples/ToolsLibs/spring/object-bean-script.scala

import example.spring._
import org.springframework.context.support._

val context = new ClassPathXmlApplicationContext("spring/scala-spring.xml");

val bean = context.getBean("factoryUsingBean").asInstanceOf[FactoryUsingBean]
println("Factory Name: " + bean.factory.nameOfFactory)

val obj = bean.factory.make("Dean Wampler")
println("Object: " + obj)

We create an instance of ClassPathXmlApplicationContext, specifying our XML file.
This context object is our gateway to the DI container. We ask it for our factoryUsing
Bean. We have to cast the returned AnyRef (i.e., Java Object) to the correct type. We
print out the factory’s name, to see if it is correct.

Next, we ask the bean’s factory to make “something” with the string "Dean Wampler".
When we print the returned object, it should be a NamedObject.

If you have Spring installed in a spring-home directory, you can run this script with the
following command:

scala -cp \
 spring-home/dist/spring.jar:spring-home/.../commons-logging.jar:. \
 spring/object-bean-script.scala

(The current working directory “.” is needed in the classpath to find the XML file.)
There are many lines of logging output. The last two lines are what we care about:

...
Factory Name: Factory for Named Objects
Object: NamedObject(Dean Wampler)

Java Library Interoperability | 383

This example required a number of files and configuration details to get working. For
a moderately large Java application, the effort is justified. However, Scala gives you new
and simpler ways to implement dependency injection in Scala code without configu-
ration files and a DI container.

Terracotta
Terracotta (see [Terracotta]) is an open source clustering product that distributes an
application over several servers by clustering JVMs upon which the application exe-
cutes. For efficiency, not all of the application’s heap objects are distributed. Instead,
the programmer specifies which data structures to distribute through configuration
files. A benefit of Terracotta is that the application does not require code changes to
support this clustering (at least in principle; some limited customization can be useful
for performance reasons). Instead, the byte code is instrumented to provide the clus-
tering. Terracotta is an alternative to distributed caches that require code changes.

[Bonér2008a] provides a detailed write-up of how to use Terracotta with Scala Actors.
A Scala-specific Terracotta Integration Module (TIM) must be installed. When con-
figuring which objects to distribute, you have to use the encoded names for companion
objects, method names, etc., as they exist at the byte code level. We discussed these
encodings in “Scala Names in Java Code” on page 375. Finally, you have to add some
more parameters to the java invocation command inside the scala script. Otherwise,
clustering Scala applications with Terracotta works just like it does for Java
applications.

Hadoop
MapReduce is a divide-and-conquer programming model for processing large data sets
in parallel. In the “map” phase, a data set is divided into N subsets of approximately
equal size, where N is chosen to optimize the amount of work that can be done in
parallel. For example, N might be close to the total number of processor cores available.
(A few cores might be left idle as “backups” or for doing other processing.) The desired
computation is performed on each subset. The “reduce” phase combines the results of
the subset calculations into a final result.

Note that mapping and reducing are essentially functional operations. Therefore, a
functional language like Scala is ideally suited for writing MapReduce applications.

384 | Chapter 14: Scala Tools, Libraries, and IDE Support

MapReduce frameworks provide tools for mapping and reducing data sets, managing
all phases of the computation, including the processing nodes, restarting operations
that fail for some reason, etc. The user of a MapReduce framework only has to write
the algorithms for mapping (subdividing) the input data, the computations with the
data subsets, and reducing the results. See [MapReduceTutorial] for a succinct over-
view and [MapReduce] for a description of Google’s MapReduce framework. The name
of the Google framework has become a de facto standard for these frameworks.

Hadoop (see [Hadoop]) is an open source MapReduce framework created and main-
tained by Yahoo!. There are two Scala wrappers around the Hadoop API: SHadoop (see
[SHadoop]) and SMR (see [SMRa] and ([SMRb]). Both examples demonstrate the great
reduction in code size when using Scala. [SMRa] attributes this code reduction to
Scala’s support for higher-order and anonymous functions, its sophisticated type sys-
tem and type inference, and the ability of for comprehensions to generate maps in an
elegant and succinct way.

Recap and What’s Next
This chapter filled in the details of the Scala command-line tools that you will use every
day. We also surveyed the available support for Scala in various text editors and IDEs.
We discussed a number of important libraries, such as testing APIs. Finally, we dis-
cussed interoperability between Scala and other JVM languages and libraries.

This completes our survey of the world of Scala programming. The next chapter is a
list of references for further exploration, followed by a glossary of terms that we have
used throughout the book.

Recap and What’s Next | 385

APPENDIX

References

[Abelson1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and
Interpretation of Computer Programs, The MIT Press, 1996.

[Agha1987] Gul Agha, Actors, The MIT Press, 1987.

[Akka] Akka: RESTful Distributed Persistent Transactional Actors, http://akkasource
.org.

[Ant] The Apache Ant Project, http://ant.apache.org/.

[Antlr] Antlr, http://www.antlr.org/.

[AOSD] Aspect-Oriented Software Development, http://aosd.net/.

[AspectJ] The AspectJ Project, http://www.eclipse.org/aspectj/.

[BDD] Behavior-Driven Development, http://behaviour-driven.org/.

[Bloch2008] Joshua Bloch, Effective Java (Second Edition), Addison-Wesley, 2008.

[Bonér2008a] Jonas Bonér, Clustering Scala Actors with Terracotta, http://jonasboner
.com/2008/01/25/clustering-scala-actors-with-terracotta.html.

[Bonér2008b] Jonas Bonér, Real-World Scala: Dependency Injection (DI), http://jonasb
oner.com/2008/10/06/real-world-scala-dependency-injection-di.html.

[Bruce1998] Kim Bruce, Martin Odersky, and Philip Wadler, A Statically Safe Alter-
native to Virtual Types, Proc. ECOOP ’98, E. Jul (Ed.), LNCS 1445, pp. 523–549,
Springer-Verlag, 1998.

[Buildr] Buildr, http://buildr.apache.org/.

[Contract4J] Contract4J: Design by Contract for Java, http://contract4j.org/.

[Cucumber] Cucumber - Making BDD Fun, http://cukes.info.

[DesignByContract] Building bug-free O-O software: An introduction to Design by Con-
tract™, http://archive.eiffel.com/doc/manuals/technology/contract/.

387

http://akkasource.org
http://akkasource.org
http://ant.apache.org/
http://www.antlr.org/
http://aosd.net/
http://www.eclipse.org/aspectj/
http://behaviour-driven.org/
http://jonasboner.com/2008/01/25/clustering-scala-actors-with-terracotta.html
http://jonasboner.com/2008/01/25/clustering-scala-actors-with-terracotta.html
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di.html
http://buildr.apache.org/
http://contract4j.org/
http://cukes.info
http://archive.eiffel.com/doc/manuals/technology/contract/

[Deursen] Arie van Deursen, Paul Klint, and Joost Visser, Domain-Specific Languages:
An Annotated Bibliography, http://homepages.cwi.nl/~arie/papers/dslbib/.

[EBNF] Extended Backus-Naur Form, http://en.wikipedia.org/wiki/Extended_Backus–
Naur_Form.

[Eiffel] Eiffel Software, http://eiffel.com.

[Ford] Bryan Ford, The Packrat Parsing and Parsing Expression Grammars Page, http:
//pdos.csail.mit.edu/~baford/packrat/.

[Ford2009] Neal Ford, Advanced DSLs in Ruby, http://github.com/nealford/presenta
tions/tree/master.

[Fowler2009] Martin Fowler, Domain Specific Languages (forthcoming), http://martin
fowler.com/dslwip/.

[FunctionalJava] Functional Java, http://functionaljava.org.

[Ghosh2008a] Debasish Ghosh, External DSLs made easy with Scala Parser Combina-
tors, http://debasishg.blogspot.com/2008/04/external-dsls-made-easy-with-scala.html.

[Ghosh2008b] Debasish Ghosh, Designing Internal DSLs in Scala, http://debasishg.blog
spot.com/2008/05/designing-internal-dsls-in-scala.html.

[GOF1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (“Gang
of Four”), Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[Guice] Guice, http://code.google.com/p/google-guice/.

[Hadoop] Hadoop, http://hadoop.apache.org.

[Haller2007] Philipp Haller and Martin Odersky, Actors That Unify Threads and
Events, http://lamp.epfl.ch/~phaller/doc/haller07coord.pdf.

[Hewitt1973] Carl Hewitt, Peter Bishop, and Richard Steiger, A Universal Modular
Actor Formalism for Artificial Intelligence, http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B
.pdf, 1973.

[Hoare2009] Tony Hoare, Null References: The Billion Dollar Mistake, http://qconlon
don.com/london-2009/speaker/Tony+Hoare.

[Hofer2008] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors,
Polymorphic Embedding of DSLs, GPCE ’08, October 19–23, 2008, Nashville, Tennes-
see, http://www.daimi.au.dk/~ko/papers/gpce50_hofer.pdf.

[HTTP11] Hypertext Transfer Protocol — HTTP/1.1, http://www.w3.org/Protocols/
rfc2616/rfc2616.html.

[Hunt2000] Andrew Hunt and Dave Thomas, The Pragmatic Programmer, Addison-
Wesley, 2000.

[JAD] JAva Decompiler (JAD), http://www.varaneckas.com/jad.

388 | Appendix: References

http://homepages.cwi.nl/~arie/papers/dslbib/
http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form
http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form
http://eiffel.com
http://pdos.csail.mit.edu/~baford/packrat/
http://pdos.csail.mit.edu/~baford/packrat/
http://github.com/nealford/presentations/tree/master
http://github.com/nealford/presentations/tree/master
http://martinfowler.com/dslwip/
http://martinfowler.com/dslwip/
http://functionaljava.org
http://debasishg.blogspot.com/2008/04/external-dsls-made-easy-with-scala.html
http://debasishg.blogspot.com/2008/05/designing-internal-dsls-in-scala.html
http://debasishg.blogspot.com/2008/05/designing-internal-dsls-in-scala.html
http://code.google.com/p/google-guice/
http://hadoop.apache.org
http://lamp.epfl.ch/~phaller/doc/haller07coord.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B.pdf
http://qconlondon.com/london-2009/speaker/Tony+Hoare
http://qconlondon.com/london-2009/speaker/Tony+Hoare
http://www.daimi.au.dk/~ko/papers/gpce50_hofer.pdf
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.varaneckas.com/jad

[Java6API] Java Platform SE 6 API, http://java.sun.com/javase/6/docs/api/.

[JavaBeansSpec] JavaBeans Specification, http://java.sun.com/javase/technologies/desk
top/javabeans/docs/spec.html.

[JPAScala] Using JPA with Scala, http://www.hars.de/2009/03/jpa-with-scala.html.

[JRuby] JRuby, http://jruby.codehaus.org/.

[JUnit] JUnit, http://junit.org.

[Laddad2009] Ramnivas Laddad, AspectJ in Action (Second Edition), Manning Press,
2009.

[Mailslot] Mailslot, http://github.com/stevej/mailslot/.

[MapReduce] MapReduce, http://labs.google.com/papers/mapreduce.html.

[MapReduceTutorial] Introduction to Parallel Programming and MapReduce, http://
code.google.com/edu/parallel/mapreduce-tutorial.html.

[Martin2003] Robert C. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall, 2003.

[Maven] The Apache Maven Project, http://maven.apache.org/.

[McBeath] Jim McBeath, Scala Syntax Primer, http://jim-mcbeath.blogspot.com/2008/
09/scala-syntax-primer.html.

[McIver2009] David R. MacIver, Scala trivia of the day: Traits can extend classes, http:
//www.drmaciver.com/2009/04/scala-trivia-of-the-day-traits-can-extend-classes/.

[Meyer1997] Bertrand Meyer, Object-Oriented Software Construction (Second Edi-
tion), Prentice Hall, 1997.

[MINA] Apache MINA, http://mina.apache.org/.

[MoneyInJava] Thomas Paul, Working with Money in Java, http://www.javaranch.com/
journal/2003/07/MoneyInJava.html.

[Naftalin2006] Maurice Naftalin and Philip Wadler, Java Generics and Collections,
O’Reilly Media, 2006.

[Naggati] Naggati, http://github.com/robey/naggati/.

[Odersky2005] Martin Odersky and Matthias Zenger, Scalable Component Abstrac-
tions, OOPSLA ’05, October 16–20, 2005, San Diego, California, USA.

[Odersky2006] Martin Odersky, Pimp My Library, http://www.artima.com/weblogs/
viewpost.jsp?thread=179766.

[Odersky2008] Martin Odersky, Lex Spoon, and Bill Venners, Programming in Scala,
Artima Press, 2008.

[Odersky2009] Martin Odersky, Lex Spoon, and Bill Venners, How to Write an Equality
Method in Java, http://www.artima.com/lejava/articles/equality.html.

References | 389

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://www.hars.de/2009/03/jpa-with-scala.html
http://jruby.codehaus.org/
http://junit.org
http://github.com/stevej/mailslot/
http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://maven.apache.org/
http://jim-mcbeath.blogspot.com/2008/09/scala-syntax-primer.html
http://jim-mcbeath.blogspot.com/2008/09/scala-syntax-primer.html
http://www.drmaciver.com/2009/04/scala-trivia-of-the-day-traits-can-extend-classes/
http://www.drmaciver.com/2009/04/scala-trivia-of-the-day-traits-can-extend-classes/
http://mina.apache.org/
http://www.javaranch.com/journal/2003/07/MoneyInJava.html
http://www.javaranch.com/journal/2003/07/MoneyInJava.html
http://github.com/robey/naggati/
http://www.artima.com/weblogs/viewpost.jsp?thread=179766
http://www.artima.com/weblogs/viewpost.jsp?thread=179766
http://www.artima.com/lejava/articles/equality.html

[Okasaki1998] Chris Okasaki, Purely Functional Data Structures, Cambridge Univer-
sity Press, 1998.

[Ortiz2007] Jorge Ortiz, Fun with Project Euler and Scala, http://scala-blogs.org/2007/
12/project-euler-fun-in-scala.html.

[Ortiz2008] Jorge Ortiz, Manifests: Reified Types, http://scala-blogs.org/2008/10/mani
fests-reified-types.html.

[OSullivan2009] Bryan O’Sullivan, John Goerzen, and Don Steward, Real World Has-
kell, O’Reilly Media, 2009.

[PEG] Parsing Expression Grammar, http://en.wikipedia.org/wiki/Parsing_expression
_grammar.

[Pierce2002] Benjamin C. Pierce, Types and Programming Languages, The MIT Press,
2002.

[Pollak2007] David Pollak, The Scala Option class and how lift uses it, http://blog.lostlake
.org/index.php?/archives/50-The-Scala-Option-class-and-how-lift-uses-it.html.

[QuickCheck] QuickCheck, Automated Specification-Based Testing, http://www.cs
.chalmers.se/~rjmh/QuickCheck/.

[Rabhi1999] Fethi Rabhi and Guy Lapalme, Algorithms: A Functional Programming
Approach, Addison-Wesley, 1999.

[RSpec] RSpec, http://rspec.info/.

[SBT] Simple Build Tool, http://code.google.com/p/simple-build-tool/.

[Scala] The Scala Programming Language, http://www.scala-lang.org/.

[ScalaAPI2008] The Scala Library, http://www.scala-lang.org/docu/files/api/index.html.

[ScalaCheckTool] ScalaCheck, http://code.google.com/p/scalacheck/.

[ScalaSpec2009] The Scala Language Specification, http://www.scala-lang.org/sites/de
fault/files/linuxsoft_archives/docu/files/ScalaReference.pdf.

[ScalaSpecsTool] Specs, http://code.google.com/p/specs/.

[ScalaTestTool] ScalaTest, http://www.artima.com/scalatest/.

[ScalaTips] Scala Tips Blog, http://scalatips.tumblr.com/.

[ScalaTools] Scala Tools, http://www.scala-tools.org/.

[ScalaWiki] Scala Wiki, http://scala.sygneca.com/.

[ScalaWikiPatterns] Scala Wiki: Scala Design Patterns, http://scala.sygneca.com/pat
terns/start.

[ScalaZ] Scalaz, http://code.google.com/p/scalaz/.

390 | Appendix: References

http://scala-blogs.org/2007/12/project-euler-fun-in-scala.html
http://scala-blogs.org/2007/12/project-euler-fun-in-scala.html
http://scala-blogs.org/2008/10/manifests-reified-types.html
http://scala-blogs.org/2008/10/manifests-reified-types.html
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://blog.lostlake.org/index.php?/archives/50-The-Scala-Option-class-and-how-lift-uses-it.html
http://blog.lostlake.org/index.php?/archives/50-The-Scala-Option-class-and-how-lift-uses-it.html
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://rspec.info/
http://code.google.com/p/simple-build-tool/
http://www.scala-lang.org/
http://www.scala-lang.org/docu/files/api/index.html
http://code.google.com/p/scalacheck/
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://code.google.com/p/specs/
http://www.artima.com/scalatest/
http://scalatips.tumblr.com/
http://www.scala-tools.org/
http://scala.sygneca.com/
http://scala.sygneca.com/patterns/start
http://scala.sygneca.com/patterns/start
http://code.google.com/p/scalaz/

[SHadoop] Jonhnny Weslley (sic), SHadoop: What is Scala and Hadoop?, http://jonhnny
-weslley.blogspot.com/2008/05/shadoop.html.

[SleepingBarberProblem] Sleeping barber problem, http://en.wikipedia.org/wiki/Sleep
ing_barber_problem.

[SMRa] David Hall, A Scalable Language, and a Scalable Framework, http://scala-blogs
.org/2008/09/scalable-language-and-scalable.html.

[SMRb] Scala Map Reduce, http://github.com/dlwh/smr/.

[Smith2009a] Eishay Smith, Beware of Scala’s Type Inference, http://www.eishay.com/
2009/05/beware-of-scalas-type-inference.html.

[Smith2009b] Eishay Smith, Unexpected repeated execution in Scala, http://www.eishay
.com/2009/06/unexpected-repeated-execution-in-scala.html.

[Spiewak2008] Daniel Spiewak, What is Hindley-Milner? (and why is it cool?), http://
www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool.

[Spiewak2009a] Daniel Spiewak, Interop Between Java and Scala, http://www.codecom
mit.com/blog/java/interop-between-java-and-scala.

[Spiewak2009b] Daniel Spiewak, The Magic Behind Parser Combinators, http://www
.codecommit.com/blog/scala/the-magic-behind-parser-combinators.

[Spiewak2009c] Daniel Spiewak, Practically Functional, talk at the Chicago-Area Scala
Enthusiasts, May 21, 2009.

[SpringFramework] The Spring Framework, http://springframework.org.

[SXR] A Scala source code browser, http://github.com/harrah/browse/tree/master.

[Szyperski1998] Clemens Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley Longman Limited, 1998.

[TDD] Test-Driven Development, http://en.wikipedia.org/wiki/Test-driven_develop
ment.

[Terracotta] Terracotta, http://terracotta.org/.

[TestNG] TestNG, http://testng.org/.

[Turbak2008] Franklyn Turbak, David Gifford, and Mark A. Sheldon, Design Concepts
of Programming Languages, The MIT Press, 2008.

[TypeInference] Type inference, http://en.wikipedia.org/wiki/Type_inference.

[VanRoy2004] Peter Van Roy and Seif Haridi, Concepts, Techniques, and Models of
Computer Programming, The MIT Press, 2004.

[Wampler2008] Dean Wampler, Traits vs. Aspects in Scala, http://blog.objectmentor
.com/articles/2008/09/27/traits-vs-aspects-in-scala.

References | 391

http://jonhnny-weslley.blogspot.com/2008/05/shadoop.html
http://jonhnny-weslley.blogspot.com/2008/05/shadoop.html
http://en.wikipedia.org/wiki/Sleeping_barber_problem
http://en.wikipedia.org/wiki/Sleeping_barber_problem
http://scala-blogs.org/2008/09/scalable-language-and-scalable.html
http://scala-blogs.org/2008/09/scalable-language-and-scalable.html
http://github.com/dlwh/smr/
http://www.eishay.com/2009/05/beware-of-scalas-type-inference.html
http://www.eishay.com/2009/05/beware-of-scalas-type-inference.html
http://www.eishay.com/2009/06/unexpected-repeated-execution-in-scala.html
http://www.eishay.com/2009/06/unexpected-repeated-execution-in-scala.html
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
http://www.codecommit.com/blog/java/interop-between-java-and-scala
http://www.codecommit.com/blog/java/interop-between-java-and-scala
http://www.codecommit.com/blog/scala/the-magic-behind-parser-combinators
http://www.codecommit.com/blog/scala/the-magic-behind-parser-combinators
http://springframework.org
http://github.com/harrah/browse/tree/master
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://terracotta.org/
http://testng.org/
http://en.wikipedia.org/wiki/Type_inference
http://blog.objectmentor.com/articles/2008/09/27/traits-vs-aspects-in-scala
http://blog.objectmentor.com/articles/2008/09/27/traits-vs-aspects-in-scala

[WirfsBrock2003] Rebecca Wirfs-Brock and Alan McKean, Object Design: Roles, Re-
sponsibilities, and Collaborations, Pearson Education, 2003.

392 | Appendix: References

Glossary

$tag
A method declared by the ScalaObject trait
and used internally by Scala. It takes no ar-
guments and returns an integer. It is cur-
rently used to optimize pattern matching,
but it may be removed in a future release of
Scala. While normally invisible to Scala code
(it is generated automatically by the com-
piler), Java code that extends some Scala
traits and classes may need to implement
this method.

Abstraction
The outwardly visible state, state transfor-
mations, and other operations supported by
a type. This is separate from the encapsula-
ted implementation (fields and methods) of
the abstraction. Scala traits and abstract
classes are often used to define abstractions
and optionally implement them. Concrete
types provide complete implementations.

Abstract Type

i. A class or trait with one or more meth-
ods, fields, or types declared, but
undefined. Abstract types can’t be in-
stantiated. Contrast with concrete
types.

ii. A type declaration within an class or
trait that is abstract.

Actor
An autonomous sender and receiver of mes-
sages in the Actor model of concurrency.

Actor Model of Concurrency
A concurrency model where autonomous
Actors coordinate work by exchanging
messages. An Actor’s messages are stored in
a mailbox until the Actor processes them.

Annotated Type
Any type that has one or more @ annotations
applied to it.

Annotation
A way of attaching “metadata” to a declara-
tion that can be exploited by the compiler
and other tools for code generation, verifi-
cation and validation, etc. In Scala (and
Java), an annotation is a class. When used,
it is prefixed with the @ character.

Any explicit type declarations are also called
type annotations.

One or more additions to a type declaration
that specify behaviors like variance under
inheritance, bounds, and views.

Application
In Scala, any object with a main routine that
is invoked by the JVM or .NET CLR at the
start of a new process.

Arity
The number of arguments to a function.

Aspect-Oriented Programming
(Sometimes called aspect-oriented software
development.) An approach to cross-cutting
concerns, where the concerns are designed
and implemented in a “modular” way (that
is, with appropriate encapsulation, lack of

393

duplication, etc.), then integrated into all
the relevant execution points in a succinct
and robust way, e.g., through declarative or
programmatic means. In AOP terms, the ex-
ecution points are called join points; a par-
ticular set of them is called a pointcut; and
the new behavior that is executed before,
after, or “around” a join point is called ad-
vice. AspectJ is the best known AOP toolkit.
Scala traits can be used to implement some
aspect-like functionality.

AspectJ
An extension of Java that supports Aspect-
Oriented Programming. AspectJ ([AspectJ])
supports two forms of syntax: an extended
Java-based syntax, and a “pure” Java syntax
that uses Java annotations to indicate the
pointcuts and advices of an aspect. The as-
pect behaviors (advices) can be incorpora-
ted into the target code at compile time, as
a post-compile “weaving” step, or at load
time.

Attribute
Another name for a field, used by
convention in many object-oriented pro-
gramming languages. Scala follows Java’s
convention of preferring the term field over
attribute.

Auxiliary Constructor
A secondary constructor of a class, declared
as a method named this with no return type.
An auxiliary constructor must invoke the
primary constructor or a previously defined
auxiliary constructor as the first or only
statement in its method body.

Base Type
A synonym for parent type.

Behavior-Driven Development
A style of Test-Driven Development (TDD)
that emphasizes TDD’s role in driving the
understanding of requirements for the code.
You follow the same process as in TDD,
where the “tests” are written before the
code. The difference is that the automated
tests are written in a format that looks more
like a requirements (or behavioral) specifi-

cation and less like a test of the code’s con-
formance to the requirements. However, the
specification format is still executable and it
still provides the verification, validation,
and regression testing service that TDD tests
provide.

Bound Variable
A variable that is declared as an argument to
a function literal. It is “bound” to a value
when the closure created from the function
literal is invoked.

By-Name Parameter
A by-name parameter looks like a function
value that takes no parameters, but rather
than being declared with the signature p: ()
⇒ R, where R is the return type, it is declared
with the signature p: ⇒ R. By-name param-
eters are evaluated every time they are ref-
erenced in the function, rather than being
evaluated once just before the function call,
like a by-value parameter. For example, they
are useful for a function that is designed to
look like a control construct that takes a
“block,” not a function with explicit param-
eter arguments (think of how while loops
look, for example). The function argument
that has block-like behavior would be a by-
name parameter.

By-Value Parameter
A by-value parameter is the usual kind of
method parameter that is evaluated before
it is passed to the method. Contrast with by-
name parameter.

Call By Name
See by-name parameter.

Call By Value
See by-value parameter.

Call Site
See declaration site.

Case
The keyword used in pattern matching ex-
pressions for testing an object against an
extractor, type check, etc.

AspectJ

394 | Glossary

Case Class
A class declared with the keyword case. The
Scala compiler automatically defines
equals, hashCode and toString methods for
the class and creates a companion object with
an apply factory method and an unapply ex-
tractor method. Case classes are particularly
convenient for use with pattern matching
(case) expressions.

Child Type
A class or trait that inherits from a parent
class or trait. Sometimes called a subtype or
derived type. See inheritance.

Client
An informal term used throughout the book
to indicate a section of software that uses
another as an API, etc.

Class
A template for instances that will have the
same fields, representing state values, and
the same methods. Scala classes support sin-
gle inheritance and zero or more mixin traits.
Contrast with type.

Closure
In Scala, an instance that has been created
from a function literal with all the free vari-
ables referenced in the function literal
bound to variables of the same name in the
enclosing scope where the function literal
was defined. In other words, the instance is
“closed” in the sense that the free variables
are bound. Because they are instances, clo-
sures are first-class values. They can be
passed to other functions to customize their
behavior. For example, List.foreach takes
a closure that is applied to each element in
the list. See also bound variables and func-
tion literals.

Comments
Scala follows the same comment conven-
tions as Java, C#, C++, etc. A // comment
goes to the end of a line, while a /*
comment */ can cross line boundaries.

Companion Class
A class declared with the same name as an
object and defined in the same source file.
See also companion object.

Companion Object
An object declared with the same name as
a class (called its companion class) and
defined in the same source file. Companion
objects are where methods and fields are de-
fined that would be statics in Java classes,
such as factory methods, apply and
unapply for pattern matching, etc.

Component
For our purposes, an aggregation of cohe-
sive types that expose services through well-
defined abstractions, while encapsulating
implementation details and minimizing
coupling to other components. (There is a
wide-range of definitions for component in
computer science and industry.)

Compound Type
The actual type of a declaration of the form
T1 extends T2 with T3 with ... TN { R },
where R is the refinement (body). Definitions
in R affect the type.

Concrete Type
A class, trait, or object with all methods,
fields, and types defined. Instances can be
created from concrete types. Contrast with
abstract types.

Contract
The protocol and requirements that exist
between a module (e.g., class, trait, object,
or even function or method) and clients of
the module. More specifically, see Design by
Contract.

Context-Free Grammar
A kind of language grammar for which each
nonterminal can be specified as a produc-
tion without reference to additional context
information. That is, each nonterminal can
appear by itself on the lefthand side of the
production the specifies it.

Context-Free Grammar

Glossary | 395

Contravariance or Contravariant
In the context of the variance behavior of
parameterized types under inheritance, if a
parameter A is contravariant in a parameter-
ized type T[-A], then the - is the variance
annotation, and a type T[B] is a supertype of
T[A] if B is a subtype of A. See also cova-
riance and invariance.

Covariance or Covariant
In the context of the variance behavior of
parameterized types under inheritance, if a
parameter A is covariant in a parameterized
type T[+A], then the + is the variance anno-
tation, and a type T[B] is a subtype of T[A] if
B is a subtype of A. See also contravariance
and invariance.

Cross-Cutting Concerns
“Concerns” (kinds of requirements, design
or coding issues) that don’t fit in the same
boundaries as the primary modularity de-
composition. The same behaviors must be
invoked consistently at specific execution
points over a range of objects and functions.
For example, the same ORM (Object-
Relational Mapping) persistence strategy
needs to be used consistently for a set of
classes, not just a single class. Hence, such
concerns are said to be cross-cutting. Sup-
porting these concerns should not involve
duplication of code, etc. See also aspect-
oriented programming.

Currying
Converting an N argument function into a
sequence of N functions of one argument,
where each function except for the last
returns a new function that takes a single
argument that returns a new function, etc.,
until the last function that takes a single
argument and returns a value.

Declaration Site
In reference to how the variance behavior of
parameterized types is specified, in Scala,
this is done when types are declared, i.e., at
the declaration site. In Java, it is done when
types are called (that is, used), i.e., at the call
site.

Declarative Programming
The quality of many functional programs
and Domain-Specific Languages where the
code consists of statements that declare re-
lationships between values and types, rather
than directing the system to take a particular
sequence of action. Contrast with impera-
tive programming.

Default Argument Value
(Scala version 2.8.) The ability to define a
default value for a method argument that
will be used if the caller does not specify a
value. See also implicit argument and named
argument.

Dependency Injection
A form of inversion of control where an ob-
ject’s external dependencies are given to it,
either programmatically or through a DI
framework that is driven by configuration
information. Hence, the object remains
“passive,” rather than taking an active role
in resolving dependencies. The injection
mechanism uses constructor arguments or
field setters provided by the object. DI min-
imizes the coupling of objects; they only
need to know about the abstractions of their
dependencies.

Derived Type
A synonym for child type.

Design By Contract
An approach to class and module design in-
vented by Bertrand Meyer for the Eiffel lan-
guage. For each entry point, valid inputs are
specified in a programmatic way, so they can
be validated during testing. These specifica-
tions are called preconditions. Similarly,
assuming the preconditions are specified,
specifications on the guaranteed results are
called postconditions and are also specified
in an executable way. Invariants can also be
specified that should be true on entry and
on exit.

Design Pattern
A solution to a problem in a context. A code
idiom or design structure that satisfies the

Contravariance or Contravariant

396 | Glossary

needs of a frequently occurring problem,
constraint, requirement, etc.

Domain-Specific Language
A custom programming language that re-
sembles the terms, idioms, and expressions
of a particular domain. An internal DSL is
an idiomatic form of a general-purpose pro-
gramming language. That is, no special-
purpose parser is created for the language.
Instead, DSL code is written in the general-
purpose language and parsed just like any
other code. An external DSL is a language
with its own grammar and parser.

Duck Typing
A term used in languages with dynamic typ-
ing for the way method resolution works. As
long as an object accepts a method call (mes-
sage send), the runtime is satisfied. “If it
walks like a duck and talks like a duck, it’s
a duck.” Contrast with the use of structural
types in some statically typed languages like
Scala.

Dynamic Typing
Loosely speaking, late binding of type infor-
mation, sometimes referred to as binding to
the value a reference is assigned to, rather
than to the reference itself. Contrast with
static typing.

Encapsulation
Restricting the visibility of members of a
type so they are not visible to clients of the
type when they shouldn’t be. This is a way
of exposing only the abstraction supported
by the type, while hiding implementation
details, which prevents unwanted access to
them from clients and keeps the abstrac-
tion exposed by the type consistent and
minimal.

Event
The notification of a state change in event-
based concurrency.

Event-Based Concurrency
A high-performance form of concurrency
where events are used to signal important
state changes and handlers are used to
respond to the events.

Existential Types
A way of expressing the presence of a type
without knowing its concrete value, some-
times, because it can’t be known. It is used
primarily to support aspects of Java’s type
system within Scala’s type system, including
type erasure, “raw” types (e.g., pre-Java 5
collections), and call site type variance.

Extractor
An unapply method defined in a companion
object that is used to extract the constituent
values for fields in an object. They are most
commonly used in pattern matching
expressions.

Field
A val or var in a type that represents part, if
not all, of the state of a corresponding in-
stance of the type.

Final
Keyword for declarations. For types, final
prevents users from subclassing the type.
For type members, final prevents users
from overriding the members.

First Class
An adjective indicating that the applicable
“thing” is a first-class value in the language,
meaning you can assign instances to varia-
bles, pass them as function parameters, and
return them from functions. Often used to
refer to functions, which are first-class values
in Scala and other functional programming
languages.

For Comprehension
Another name for Scala’s for expression.

Formal Parameter
Another name for a function argument, used
in the context of binding the free variables
in the function.

Free Variable
A variable that is referenced in a function lit-
eral but is not passed in as an argument.
Therefore, it must be “bound” to a defined
variable of the same name in the context
where the function literal is defined, to form
a closure.

Free Variable

Glossary | 397

Function
In Scala, the term function is used for a func-
tion that is not tied to a particular object or
class. Contrast with method. Functions are
instances of FunctionN types, where N is the
arity of the function.

Function Literal
Scala’s term for an anonymous function ex-
pression, from which closures are created.

Function Type
In Scala, all functions are instances of
FunctionN[-T1, T2, ..., TN, +R] types,
where N is the number of arguments (0
through 22 are supported). The type signa-
ture syntax (T1, T2, ..., TN) ⇒ R is used
for declaring concrete instances, i.e., func-
tion literals.

Functional Programming
A form of programming that mimics the way
mathematical functions and variables work.
Mathematical functions are side-effect-free,
and they are composable from other func-
tions. Variables are assigned once. Func-
tions can be assigned to variables and
returned from other functions.

Generator
Expressions like i <- listOfInts in for ex-
pressions. Each pass through the loop gen-
erates a new val i taken from the list listO
fInts, in this example.

Generics
Another term for parameterized types, used
more often in Java than Scala.

Higher-Order Functions
Functions that take other functions as argu-
ments or return a function value.

Immutable Value
A value that can’t be changed after it has
been initialized. Contrast with mutable
value.

Imperative Programming
The quality of many object-oriented and
“procedural” programs where the code con-
sists of statements directing the system to

take a particular sequence of actions. Con-
trast with declarative programming.

Implicit
A Scala keyword used to mark a method or
function value as eligible for use as an im-
plicit type conversion. The keyword is also
used to mark an implicit argument.

Implicit Type Conversion
A method or function value that is marked
with the implicit keyword, marking it as el-
igible for use as an implicit type conversion,
whenever it is in scope and conversion is
needed (e.g., for the Pimp My Library
pattern).

Implicit Argument
Method arguments that are optional for the
user to specify and indicated with the
implicit keyword. If the user does not spec-
ify a value for the argument, a default value
is used instead, which is either an in-scope
value of the same type or the result of calling
an in-scope, no-argument method that re-
turns an instance of the same type. See also
default argument value.

Infinite Data Structure
A data structure that represents a non-
terminating collection of values, but which
is capable of doing so without exhausting
system resources. The values are not com-
puted until the data structure is asked to
produce them. As long as only a finite subset
of the values are requested, resource ex-
haustion is avoided.

Infix Notation
A syntax supported by the compiler for
methods with one argument. The method
can be invoked without the period between
the object and the method name and with-
out the parentheses around the argument.
When used for methods named with oper-
ator characters, the syntax provides a form
of operator overloading. Sometimes also
called operator notation. See also postfix
notation.

Function

398 | Glossary

Infix Type
When a parameterized type of the form
Op[A,B] is used to instantiate a type, it can
also be written as A Op B. For example,
Or[Throwable,Boolean] can be written
Throwable Or Boolean.

Inheritance
A strong relationship between one class or
trait and another class or trait. The
inheriting (derived) class or trait incorpo-
rates the members of the parent class or trait,
as if they were defined within the derivative.
The derivative may override inherited mem-
bers (in most cases). Instances of a derivative
are substitutable for instances of the parent.

Instance or Instantiate
An object created by invoking a class con-
structor. The word object is synonymous in
most object-oriented languages, but we use
the term object to refer to an explicitly
declared Scala object, and we use the term
instance (and the verb instantiate) for the
more general case.

Instantiation can also refer to creating a
concrete type from a parameterized type
by specifying concrete types for the
parameters.

Invariance and Invariant
In the context of the variance behavior of
parameterized types under inheritance, if a
parameter A is invariant in a parameterized
type T[A], then there is no variance annota-
tion, and a type T[B] is a subtype of T[A] if
and only if B equals A. That is, the type can’t
be changed. See also covariance and
contravariance.

In the context of Design by Contract, an as-
sertion that should be true before and after
a method is executed.

Inversion of Control
The idea that an object should not instanti-
ate its own copies of external dependencies,
but rather rely on other mechanisms to sup-
ply those dependencies. IoC promotes bet-
ter decoupling and testability, as the object
only knows about the abstractions of its de-

pendencies, not specific concrete imple-
menters of them. A weak form of IoC is
when an object calls a factory, service loca-
tor, etc., to obtain the dependents. Hence,
the object still has an active role and it has a
dependency on the “provider.” The stron-
gest form of IoC is dependency injection,
where the object remains “passive.”

Lazy
Immutable variables (vals) can be declared
lazy, meaning they will only be evaluated
when they are read. This feature is useful for
expensive evaluations that may not be
needed.

Lazy data structures can also be used to
define infinite data structures that won’t ex-
haust system resources as long as only a fi-
nite subset of the structure is evaluated. The
Stream and Range classes are both lazy.
Contrast with strict.

Linearization
The algorithm used for a type to resolve
member lookup, such as overridden meth-
ods, including calls to super.

Literal
Used to refer to “literal” value expressions,
such as numbers (e.g., 1, 3.14), strings (e.g.,
“Hello Scala!”), tuples (e.g., (1, 2, 3)), and
function literals (e.g., (x) ⇒ x + x).

Lower Type Bounds
See type bounds.

Mailbox
The queue where an Actor’s messages are
stored until the Actor processes them in the
Actor model of concurrency.

Main
The entry function for an application that is
invoked by the runtime is called main. The
name dates back to the C language. In Scala,
a main method must be defined in an
object. Java, by way of contrast, requires a
main method to be defined as a static method
of a class.

Main

Glossary | 399

MapReduce
A divide-and-conquer strategy for process-
ing large data sets in parallel. In the “map”
phase, the data sets are subdivided. The de-
sired computation is performed on each
subset. The “reduce” phase combines the
results of the subset calculations into a final
result. MapReduce frameworks handle the
details of managing the operations and the
nodes they run on, including restarting
operations that fail for some reason. The
user of the framework only has to write the
algorithms for mapping and reducing
the data sets and computing with the
subsets.

Member
A generic term for a type, field, or method
declared in a class or trait.

Memoization
A form of caching that optimizes function
invocations. The results from a function’s
invocations are saved so that when repeated
invocations with the same inputs are made,
the cached results can be returned instead of
reinvoking the function.

Message
In the Actor model of concurrency, messages
are exchanged between Actors to coordinate
their work.

In object-oriented programming, method
invocation is sometimes referred to as
“sending a message to an object,” especially
in certain languages, like Smalltalk and, to
some extent, Ruby.

Method
A function that is associated exclusively with
an instance, either defined in a class, trait,
or object definition. Methods can only be
invoked using the object.method syntax.

Mixin
A narrowly focused encapsulation of state
and behavior that is more useful as an ad-
junct to another object’s state and behavior,
rather than standing on its own. Mixins in
Scala are implemented using traits.

Multiple Inheritance
In some languages, but not Scala, a type can
extend more than one parent class. Com-
pare to single inheritance.

Mutable Value
A value that can be changed after it has been
initialized. Contrast with immutable value.

Named Argument
(Scala version 2.8.) The ability to refer to a
method argument by name when calling the
method. It is useful in combination with de-
fault argument values for minimizing the
number of arguments that have to be speci-
fied by the caller.

Nonterminal
An item in a grammar that requires further
decomposition into one or more nontermi-
nals (including possibly a recursive refer-
ence to itself) and terminals.

Object
A cohesive unit with a particular state, pos-
sible state transitions, and behaviors. In
Scala, the keyword object is used to declare
a singleton explicitly, using the same syntax
as class declarations, except for the lack of
constructor parameters and auxiliary pa-
rameters (because objects are instantiated
by the Scala runtime, not by user code). To
avoid confusion with objects, we use the
term instance to refer to instances of classes
and objects generically.

Object-Oriented Programming
A form of programming that encapsulates
state values and operations on that state,
exposing a cohesive abstraction to clients of
the object while hiding internal implemen-
tation details. OOP also supports subtyping
to define specializations and “family” rela-
tionships between types.

Operator Characters
Characters like <, *, etc. that are not letters,
nor digits, nor reserved characters, like left
and right parentheses, curly braces, square
brackets, the semicolon, colon, or comma.
These characters can be used in method

MapReduce

400 | Glossary

names to implement a form of operator
overloading.

Operator Notation
See infix notation.

Operator Overloading
The feature in some languages where stand-
ard mathematical operators, like *, /, <, etc.,
can be defined by users for custom types. In
Scala, a form of operator overloading is sup-
ported by allowing operator characters to be
used as normal method names and by al-
lowing methods with one argument to be
invoked with infix notation. The “operator
precedence” for these methods is deter-
mined by the first character, e.g., method
*< will have higher precedence than method
+<.

Overloaded Functions
Two or more functions defined in the same
scope (e.g., as methods in a type or as “bare”
functions) that have the same name but dif-
ferent signatures.

Package Objects
A special kind of object declaration that de-
clares members that should be visible at the
scope of the named package. For example,
for the declaration package object math
{ type Complex = ... }, the Complex type
can be referenced as math.Complex. (Scala
version 2.8.)

Packrat Parsers
Parsers for parsing expression grammars
(PEGs; see [Ford]). They have several bene-
fits, such as lack of ambiguity and good per-
formance characteristics. The forthcoming
Scala version 2.8 parser combinator library
will add support for creating packrat
parsers.

Parameterized Types
Scala’s analog of generics in Java. Parame-
terized types are defined with placeholder
parameters for types they use. When an in-
stance of a parameterized type is created,
specific types must be specified to replace
all the type parameters. See also type
constructor.

Parent Type
A class or trait from which another class or
trait is derived. Also called a supertype or
base type. See inheritance.

Parsing expression grammars (PEGs)
An alternative to context-free grammars that
provide guaranteed linear-time parsing
using memoization and unambiguous
grammars ([PEG]).

Partial Application
Associated with currying, where a subset of
a curried function’s arguments are applied,
yielding a new function that takes the re-
maining arguments.

Partial Function
A function that is not valid over the whole
range of its arguments. Pattern matching ex-
pressions can be converted to partial func-
tions by the compiler in some contexts.

Path-Dependent Type
A nested type T is unique based on its
“path,” the hierarchical, period-delimited
list of the enclosing packages, the enclosing
types, and finally the type T itself. Instances
of T can have different, incompatible types.
For example, if T is nested in a trait and the
trait appears in the linearizations of different
types, then the instances in those Ts will
have different types.

Pattern Matching
Case expressions, usually in a match expres-
sion, that compare an object against
possible types, type extractors, regular ex-
pressions, etc., to determine the appropriate
handling.

Pimp My Library
The name of a design pattern that appears
to add new methods to a type. It uses an
implicit type conversion to automatically
wrap the type in a wrapper type, where the
wrapper type has the desired methods.

Precondition
An assertion that should be true on entry to
a method or other entry point. See Design by
Contract.

Precondition

Glossary | 401

Postcondition
An assertion that should be true on exit from
a method or other boundary point. See De-
sign by Contract.

Postfix Notation
A syntax supported by the compiler for
methods with no argument, sometimes
called nullary methods. The method can be
invoked without the period between the
object and the method name. See also infix
notation.

Primary Constructor
The main constructor of a class, consisting
of the class body with the parameter list
specified after the name of the class. See also
auxiliary constructor.

Primitive Type
A non-object type on the underlying run-
time platform (e.g., JVM and .NET). Scala
does not have primitive types at the source
code level. Rather, it uses value types, which
are subclasses of AnyVal, to wrap runtime
primitives, providing object semantics at the
code level, while using boxing and unboxing
of primitives at the byte code level to opti-
mize performance.

Production
A term used for each part of a grammar that
decomposes a specific nonterminal into
other nonterminals (perhaps including a
recursive reference to the original nontermi-
nal) and terminals.

Pure
Used in the context of functions to mean
that they are side-effect-free. See also refer-
ential transparency.

Recursion
When a function calls itself as part of its
computation. A termination condition is re-
quired to prevent an infinite recursion. See
also tail-call recursion.

Reference Type
A type whose instances are implemented as
objects on the runtime platform. All refer-
ence types subtype AnyRef.

Referential Transparency
The property of an expression, such as a
function, where it can be replaced with its
value without changing the behavior of the
code. This can be done with side-effect-free
functions when the inputs are the same. The
primary benefit of referential transparency
is that it is easy to reason about the behavior
of a function, without having to understand
the context in which it is invoked. That
makes the function easier to test, refactor,
and reuse.

Refinement
The term used for adding or overriding
members in a type body for a compound
type.

Reified Types
Where the specific types used when instan-
tiating a generic type are retained in the byte
code, so the information is available at run-
time. This is a property of .NET byte code,
but not JVM byte code, which uses type era-
sure. To minimize incompatibilities, both
the Java and .NET Scala versions use type
erasure.

REPL
A name given to interactive language inter-
preters, like the scala command in inter-
preter mode. REPL is an acronym for Read,
Evaluate, Print, Loop.

Scaladocs
The API documentation generated from
Scala source code using the scaladoc tool,
analogous to Java’s Javadocs.

Scope
A defined boundary of visibility, constrain-
ing what types and their members are visible
within it.

Sealed
Keyword for parent classes when all the di-
rect subclasses allowed are defined in the
same source file.

Self-Type Annotation
A declaration in a trait or class that changes
its type, sometimes with an alias for this

Postcondition

402 | Glossary

defined (self is conventional). A self type
can be used to indicate dependencies on
other traits that will have to be mixed into a
concrete instance to resolve the depend-
ency. In some cases, these dependencies are
used to ensure that an instance of the cur-
rent type can be used as an instance of a de-
pendent type in certain contexts (e.g., as
used in the Observer Pattern in “Self-Type
Annotations and Abstract Type Mem-
bers” on page 317).

Side-Effect-Free
Functions or expressions that have no side
effects, meaning they modify no global or
“object” state.

Signature
For a function: the name, parameter list
types, and return value. For a method: also
includes the type that defines the method.

Single Inheritance
A class, object, or trait can extend one pa-
rent class. Compare to multiple inheritance.

Singleton
A class that has only one instance. In Scala,
singletons are declared using the keyword
object instead of class.

Singleton Types
The unique type designator that excludes
path dependencies. If p1 and p2 are two dif-
ferent path-dependent types, their singleton
types are p1.type and p2.type, which may
be the same. Contrast with singleton objects.
Singleton types are not specifically the types
of singleton objects, but singleton objects do
have singleton types.

Stable Types
Used in the context of path-dependent
types, all but the last elements in the path
must be stable, which roughly means that
they are either packages, singleton objects,
or type declarations that alias the same.

State
As in, “the state of an object,” where it in-
formally means the set of all the current val-
ues of an object’s fields.

Static Typing
Loosely speaking, early binding of type in-
formation, sometimes referred to as binding
to a reference, rather than the value to which
the reference is assigned.

Strict
Used to refer to data structures that are not
lazy, i.e., they are defined “eagerly” by the
expressions used to construct them.

Structural Type
A structural type is like an anonymous type,
where only the “structure” a candidate type
must support is specified, such as members
that must be present. Structural types do not
name the candidate types that can match,
nor do any matching types need to share a
common parent trait or class with the struc-
tural type. Hence, structural types are a
type-safe analog to duck typing in dynami-
cally typed languages, like Ruby.

Subtype
A synonym for derived type.

Supertype
A synonym for parent type.

Symbol
An interned string. Literal symbols are writ-
ten starting with a single “right quote,” e.g.,
'name.

Tail-Call Recursion
A form of recursion where a function calls
itself as the last thing it does, i.e., it does no
additional computations with the result of
the recursive call. The Scala compiler will
optimize tail-call recursions into a loop.

Test-Driven Development
A development discipline where no new
functionality is implemented until a test has
been written that will pass once the func-
tionality is implemented. See also Behavior-
Driven Development.

Terminal
A token in a grammar, such as a keyword,
that requires no further decomposition. See
also nonterminal.

Terminal

Glossary | 403

Test Double
When testing the behavior of one object, a
test double is another object that satisfies a
dependency in the object under test. The
test double may assist in the testing process,
provide controlled test data and behaviors,
and modify the interaction between the ob-
ject under test and the test double. Specific
types of test doubles include “fakes,”
“mocks,” and “stubs.”

Trait
A class-like encapsulation of state (fields)
and behavior (methods) that is used for
mixin composition. Zero or more traits can
be mixed into class declarations or when
creating instances directly, effectively creat-
ing an anonymous class.

Trampoline
A loop that iterates through a list of func-
tions, invoking each in turn. The metaphor
of bouncing the functions off a trampoline
is the source of the name. It can be used to
rewrite a form of recursion where a function
doesn’t call itself, but rather calls a different
function that invokes the original function,
and so forth, back and forth. There is a pro-
posal for the Scala version 2.8 compiler to
include a trampoline implementation.

Tuple
A grouping of two or more items of arbitrary
types into a “Cartesian product,” without
first defining a class to hold them. Literal
tuple values are written in parentheses and
separated by commas, e.g., (x1, x2, ...).
They are first-class values, so you can assign
them to variables, pass them as values, and
return them from functions. Tuples are rep-
resented by TupleN classes, for N between 2
and 22, inclusive.

Type
A categorization of allowed states and op-
erations on those states, including transfor-
mations from one state to another. The type
of an instance is the combination of its de-
clared class (explicitly named or anony-
mous), mixed-in traits, and the specific
types used to resolve any parameters if the

class or traits are parameterized types. In
Scala, type is also a keyword. When indica-
ted in the text, we sometimes use the term
type to refer to a class, object, or trait gener-
ically.

Type Annotation
An explicit declaration of the type of a value,
e.g., count: Int, where Int is the type anno-
tation. A type annotation is required when
type inference can’t be used. In Scala, func-
tion parameters require type annotations,
and annotations are required in some other
contexts where the type can’t be inferred,
e.g., for return values of some functions.

Type Bounds
Constraints on the allowed types that can be
used for a parameter in a parameterized
type or assigned to an abstract type. In Scala,
the expression A <: B defines an upper
bound on A; it must be a subtype or the same
as B. The expression A >: B defines a lower
bound on A; it must be a supertype or the
same as B.

Type Constructor
Informally, a parameterized type is some-
times called a type constructor, although a
“non-parameterized” type is really a type
constructor too, just with zero parameters!
The analogy with an instance constructor is
that you specify specific concrete types for
the parameters to create a new concrete
type, just as you specify values to an instance
constructor to create an instance.

Type Designators
The conventional type IDs commonly used,
e.g., class Person, object O { type t }.
They are actually a shorthand syntax for
type projections.

Type Erasure
A property of the generics type model on the
JVM. When a type is created from a generic,
the information about the specific types sub-
stituted for the type parameters is not stored
in the byte code and is therefore not availa-
ble at runtime. Scala must follow the same
model. So, for example, instances of

Test Double

404 | Glossary

List[String] and List[Int] are indistin-
guishable. Contrast with reified types.

Type Inference
Inferring the type of a value based on the
context in which it is used, rather than
relying on explicit type annotations. Some-
times called implicit typing.

Type Projections
A way to refer to a type nested within an-
other type. For example, if a type t is de-
clared in a class C, then the type projection
for t is C#t.

Type Variance
When a parameterized type is declared, the
variance behavior under inheritance of each
type parameter can be specified using a type
variance annotation on the type symbol.

Type Variance Annotation
On a type parameter in a parameterized
types, a + prefixed to the type symbol is used
to indicate covariance. A - prefix on the type
symbol is used to indicate contravariance.
No variance annotation is used to indicate
invariance (the default).

Upper Type Bounds
See type bounds.

Value
The actual state of an instance, usually in the
context of a variable that refers to the in-
stance. See also value type.

Value Object
An immutable instance or object.

Value Type
A subclass of AnyVal that wraps a corre-
sponding non-object “primitive” type on
the runtime platform (e.g., JVM and .NET).
The value types are Boolean, Char, Byte,
Double, Float, Long, Int, and Short. (Unit is
also a value type.) All are declared abstract
final so they can’t be used in new V expres-
sions. Instead, programs specify literal val-
ues, e.g., 3.14 for a Double or use methods
that return new values. The Scala runtime

handles instantiation. All the instances of
value types are immutable value objects.

The term value type is also used to mean the
categories of types for instances. That is, the
type of every instance must fall into one
of several categories: annotated types,
compound types, function types, infix types,
parameterized types, tuples, type designa-
tors, type projections, and singleton types.

Variable
A named reference to a value. If the variable
is declared with the val keyword, a new
value can’t be assigned to the variable. If the
variable is declared with the var keyword, a
new value can be assigned to the variable.
The value a variable references must be type-
compatible with the declared or inferred
type of the variable.

View
An implicit value of function type that con-
verts a type A to B. The function has the type
A => B or (=> A) => B. (In the later case, the
(=> A) is a by-name parameter.) An in-scope
implicit type conversion method with the
same signature can also be used as a view.

View Bounds
A type specification of the form A <% B,
which says that any type can be used for A
as long as an in-scope view exists that can
convert an A to a B.

Visibility
The scope in which a declared type or type
member is visible to other types and
members.

Visibility

Glossary | 405

Index

Symbols
! (exclamation point)

! method, sending messages to Actors, 21,
55, 196

!! method, sending messages to Actors, 202
!= (not equal) method, 143
!= (not equal) operator, 63
encoding in Java identifiers, 375
operator precedence, 56

" " (quotation marks, double)
enclosing string literals, 39
escaping in character literals, 38
triples of double quotes, bounding multi-

line string literals, 39
(pound sign)

encoding in Java identifiers, 375
use in type projections, 51

$ (dollar sign) in identifiers, 54
% (percent sign)

encoding in Java identifiers, 375
operator precedence, 56

& (ampersand)
&& (and) operator, 63
encoding in Java identifiers, 375
operator precedence, 56

' ' (quotation marks, single)
enclosing character literals, 38
in symbol literals, 39

() (parentheses)
capture groups in regular expressions, 69
in method invocations, dropping, 53
omitting for by-name function parameter,

189
omitting in method definitions, 124

omitting in method invocations, 55
substituting curly braces for in method call,

19
* (asterisk)

multiplication operator, encoding in Java
identifiers, 375

operator precedence, 56
zero or more repetitions in production rule,

233
+ (plus sign)

++ method, appending to lists, 57
encoding in Java identifiers, 375
operator precedence, 56
specifying at least one repetition in

production rule, 233
variance annotations, 251, 254

- (minus sign)
encoding in Java identifiers, 375
operator precedence, 56
variance annotations, 251, 254

-> (right arrow) operator, 41
. (dot)

infix operator notation, 223
omitting in method calls, 53, 55
period-delimited path expressions, 274

/ (slash)
/* */ in multi-line comments, 11
// in single-line comments, 11
division operator, encoding in Java

identifiers, 375
operator precedence, 56

: (colon)
:: (constructor) method

extracting head and tail of list, 65
prepending to a list, 57

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

407

:: class, 263
:\ (foldRight) and :/ (foldLeft), 180
encoding in Java identifiers, 375
methods ending in, right-associative

invocation, 57
operator precedence, 56
separator between identifiers and type

annotations, 12, 51
; (semicolon)

ending production rule definitions, 232
ending statements in Scala code, 23
separators in for expression, 60

< > (angle brackets)
< (less than) operator, 63

encoding in Java identifiers, 375
<% indicating view bound in type

declaration, 51, 264
<- (left-arrow) operator, generators, 51, 60,

62
<:, use in parameterized and abstract type

declarations, 51
> (greater than) operator, 63

encoding in Java identifiers, 375
>:, constraining allowed types in

parameterized and abstract type
declarations, 51

in method names, 13
operator precedence, 56

= (equals sign)
== (equals) method, 143
== (equals) operator, 63, 138
=> in function literals, 51
assignment operator, 51
encoding in Java identifiers, 375
in method definitions, 13, 26

missing, 35
operator precedence, 56

? (question mark)
encoding in Java identifiers, 375

@ (at sign)
encoding in Java identifiers, 375
extracting value of XML attributes, 213
marking annotations, 51

[] (square brackets)
enclosing optional items in parser grammar,

233
use with parameterized types, 13, 29, 47

\ (backslash)
in character escape sequences, 38

encoding in Java identifiers, 375
escaping double quotes in string literals, 39
projection functions, 212
\ and \\ operators for document structures,

55
^ (caret)

encoding in Java identifiers, 375
operator precedence, 56

_ (underscore)
in identifiers, 54
method chaining and function-literal

shorthands, 16
placeholder in imports, function literals,

etc., 15, 51
reserved word, 54
wildcard character in Scala, 19, 45, 64

`` (back quotes) in literals, 54
{ } (curly braces)

enclosing class body, 12
enclosing for expressions, 60
in method declarations, 26
substituting for parentheses in method call,

19
{ indicating more code on next line, 24

| (vertical bar)
encoding in Java identifiers, 375
operator precedence, 56
or case in parser grammar, 235
|| (or) operator, 63

~ (tilde)
case class defined by Parsers trait, 238
encoding in Java identifiers, 375
~, ~>, and <~ combinator operators, 234

A
abstract classes, 18
abstract keyword, 83
abstract type members, 6, 111

overriding abstract methods, 113
abstract types, 47, 267–272

combined with self-type annotations, 317
defined, 393
overriding, 120–123
parameterized types versus, 270

abstraction, 393
access modifier keywords, 97
Actors, 5, 194–203

in abstract, 194
Actor class, 194

408 | Index

Actor class and object, 19
Actor model of concurrency, 393
defined, 393
effective use of, 202
example, 17–21
example using sleeping barber problem,

197–202
factory method for creating, 194
mailbox, 196
methods, listed, 202
sending messages to, 195
shortcut operators used with, 55
using with MINA NIO and Naggati library

for SMTP server, 205–210
actors.maxPoolSize system property, 208
advice (in AOP), 378
alternative composition, 232
and operator (&&), 63
annotated types, 275, 393
Annotation class, 291

Scala annotations derived from, 293
annotations, 289–300

advantages and disadvantages of, 304
available only in Scala version 2.8 or later,

295
defined, 393
nesting, 293
Scala annotations derived from Annotation,

293
Scala annotations derived from

StaticAnnotation, 294
@scala.reflect.BeanProperty, 374, 381

anonymous classes
creating, 82

Ant, Scala plugin for, 353
Any class, 91

!= (not equal) method, 143
== (equals) method, 143

Any object, 155
AnyRef class

== (equals) method, 143
eq and ne methods, 143

AnyRef object, 155
direct and indirect subtypes, 156
reflection methods, 248

AnyVal object, 155
direct subtypes, 156

AnyVal types, conversion to Java primitives,
375

AOP (see aspect-oriented programming)
Apache MINA, 205
application design, 289–342

annotations, 289–300
Design by Contract, 340
design patterns, 325–340
effective trait design, 321–325
enumerations versus case classes and

pattern matching, 304
enumerations versus pattern matching,

300–304
exceptions and alternatives, 311
nulls versus Options, 306
scalable abstractions, 313

applications, 393
apply method, 127–129

for collections, 132
objects with, considered as functions, 277

arity, 393
Array class

apply method, 129
sameElements method, 143

Array object, apply method overloaded for
AnyVal and AnyRef types, 259

ArrayBuffer object, 176
arrays, comparing for equality, 143
arrow operator (<-), 60, 62
ArrowAssoc class, 146
aspect-oriented programming (AOP), 76, 377

defined, 394
AspectJ library, 377–381, 394
AtomFeed class (example), 215
attributes, 90, 394
auxiliary constructors, 92, 394

B
bang method (see ! (exclamation point), under

Symbols)
base classes, 91
base type, 394
BDD (Behavior-Driven Development), 57

BDD syntax provided by ScalaTest, 361
defined, 394
specification exercising combined Button

and Subject types, 80
Specs library, 363–365

BigDecimal class, 221
blogging system (example), 215–216

AtomFeed class, 215

Index | 409

boolean literals, 38
bound variables, 394
break method, 63
build tools, 353
Buildr tool, 353
by-name parameters, 189, 263

defined, 394
by-value parameters, 189

defined, 394

C
C#

abstract methods, 18
override keyword for concrete methods, 18
this keyword, 18

C++
multiple inheritance, 321
templates, 297

C.super type, 273
C.this type, 273
Cake Pattern, 335–340
call site (see declaration site)
call-by-name parameters, 277
capture groups, defining in regular expressions,

69
case classes, 136–142

binary operations, 139
copy method in Scala 2.8, 140
defined, 395
defining for pattern matching, 68
enumerations as alternative to, 300
enumerations versus, 304
inheritance, 140, 334
pattern matching on, 67

case clauses, binding nested variables in, 69
case keyword, 394

case class example, 136
case objects, 198
case statements

pattern matching versus, 64
cases in pattern matching, 67

unreachable case, 64
character literals, 38
characters

operator characters, encoding in Java, 375
used in identifiers, 54

child types, 395
class keyword, 12, 89
classes

abstract, 18, 48
adding new methods to, 188
basics of, 89
declaration of classes as singletons, 149
defined, 395
derived, overriding vals declared in parent

classes, 25
JDK and .NET, use in Scala, 9
nested, 95
overriding abstract and concrete fields in,

119
overriding abstract and concrete methods,

112
parent, 91
sealed class hierarchies, 151–155
traits versus, 87
Upper class (example), 12

ClassfileAnnotation class, 292
Clickable trait (example), 82
clients, 395
closures, 169

defined, 5, 395
CLR (Common Language Runtime), Scala

running on, 5
code examples in this book, xix, 10
code, organizing in files and namespaces, 44
codec for SMTP (example), 206
collections

apply and unapplySeq methods, 132
mutable and immutable, 158

command-line tools, 343–353
information on, 10
sbaz, 352
scala, 345–350
scalac, 343
scaladoc, 352
scalap, javap, and jad, 350

comments, 11, 395
companion classes, 126

defined, 395
companion objects, 126–136

apply and unapplySeq methods for
collections, 132

apply method, 127–129
conversion methods defined in, 187
creation for case classes, 138
defined, 395
Java static methods and, 134
Map and Set, 146

410 | Index

methods defined in, visibility to Java code,
373

Pair object for Pair class, 146
unapply method, 129–131

compiled, command-line tool, converting
script to, 15

compiler (see scalac compiler)
compiling versus interpreting, 12
component model, functional programming

and, 192
components

defined, 313, 395
fine-grained visibility rules in Scala, 314
implementing as traits, 337

compound types, 276
defined, 395

comprehensions, 59
concrete types, 395
concurrency, 16–21

Actor model of, 393
event-based, 397
Java and, 2
problems of shared, synchronized state,

193
traditional, using threading and events,

203–210
events, 205–210
one-off threads, 203
using java.util.concurrent, 204

using Actors, 194–203
Actors in abstract, 194
Actors in Scala, 194–203

conditional operators, 63
Console.println() method, 14
constant identifiers, 54
constants

default argument values, 27
defining, 149

constructors, 18, 92–95
case class, 138
constraints on, advantages and

disadvantage of, 94
parent class constructors, calling, 94

context-free grammars, 230, 395
contract, 254

defined, 395
contractual constraints in Design by Contract,

340
contravariance or contravariant, 396

contravariant subclassing, 252
covariance or covariant, 396
covariant specialization, 317
covariant subclassing, 252
@cps (continual passing style) annotation,

298
cross-cutting concerns, 396
cross-platform installer (lzPack), 8
curried functions, 184, 278
currying, 396

D
data types, 247–288

abstract, 47, 267
parameterized types versus, 270

AnyVal types, conversion to Java primitives,
375

defined, 404
documentation for Scala type system, 288
existential types, 284
importing types and their members, 45
inferring type information, 29–36
infinite data structures and lazy vals, 285
Nothing and Null, 267
parameterized types, 47, 249
path-dependent types, 272
pattern matching on type, 65
reflection, 248
Scala’s sophisticated type system, 6
self-type annotations, 279–283
static versus dynamic typing, 2
structural types, 77, 283
type bounds, 259–267
type hierarchy in Scala, 155
value types, 275–279
variance under inheritance, 251

variance in Scala versus Java, 256–259
variance of mutable types, 255

decimal integer literals, 36
declaration site, 251, 396
declarations

annotations in, 289–300
order of declaration, traits and, 86
visibility modifiers in, 97

declarative composition of traits, 86
declarative programming, 396
decompilers (scalap, javap, and jad), 350
deep matching, 67
def keyword, 12, 26

Index | 411

default argument value, 396
definitions, method, 26
dependency injection (DI)

defined, 396
Spring Framework, 381
using Cake Pattern, 334–340

derived types, 395
access to members of parent types, 97

Design by Contract, 253, 340
BankAccountSpec object (example), 341
defined, 396

design patterns, 325–340, 397
alternative to Visitor Pattern, 326–334
dependency injection (DI) implementation,

Cake Pattern, 334–340
diamond of death (problem with multiple

inheritance), 321
do-while loops, 62
documentation

Scala tools and APIs, 10
Scala type system, 288

DSLs (Domain-Specific Languages), 57, 217–
245

benefits and drawbacks of, 217
defined, 397
external DSLs with parser combinators,

230–244
generating paychecks with external DSL,

239–244
parser combinators, 230
payroll external DSL, 230–233
Scala implementation of external DSL

grammar, 233–239
internal DSL for payroll application

(example), 218–230
apply methods, 224
implicit conversions and user-defined

types, 223
infix operator notation, 223
payroll API, 219–222
payroll internal DSL, 222
payroll rules DSL implementation, 224–

229
internal versus external, 244

duck typing, 283
defined, 397

dynamic typing, 397
versus static typing, 2

dynamically typed languages, 2

E
eager matching, 64
EBNF (Extended Backus-Naur Form) grammar

notation, 230
external payroll DSL grammar, 231

Eclipse IDE
developing Scala applications, 355
installing Scala plugin, 354

Eiffel language, 340
Either object, 158
else clause (if statements), 59
Emacs editor, 360
encapsulation

defined, 397
visibility rules and, 96

Ensuring class, 342
enumerated types, 72
Enumeration class, 72
Enumeration.Value class, 302
enumerations, 72, 300–304

advantages and disadvantages of, 304
case classes and pattern matching versus,

304
HttpMethod object (example), 301–304
scala.Enumeration class, 300

eq method (AnyRef), 143
equality of objects, 142
equals method, 143

case class comparisons, 141
equals operator (==), 63
events, 397

using for concurrency, 205–210, 397
exception handling, pattern matching using try,

catch, and finally clauses, 70
exceptions

@throws annotation and, 298
@unchecked annotation and, 296
and alternatives to, 311
throwing, 71

executing a script, 12
existential types, 266, 284

defined, 397
examples of, 285

expectations, 364
exponentials with floating-point literals, 37
expressions

for expression, 59
if statements as, 58

extends keyword, 79, 91

412 | Index

external DSLs, 218, 230
(see also DSLs)
internal DSLs versus, 244

extractors, 397
translating regular expression capture

groups to, 69
unapply methods, 129
use in pattern matching case statements,

138

F
factory methods, apply method as, 127
family polymorphism, 317
Fibonacci sequence, calculating, 285
fields, 90

comparison to Java class-level, 148
defined, 397
indistinguishable from accessor methods,

overriding, 123–126
mutable, 18
order of initialization, using lazy vals, 190
overriding abstract and concrete fields, 114
overriding abstract and concrete fields in

classes, 119
overriding abstract and concrete fields in

traits, 114–119
referencing object field, 149
visibility and access to, 97

filtering
in for expressions, 60
in functional programming, 178

final declarations, attempting to override, 112
final keyword, 397
finishing problem (in DSL design), 229
first class, 397
floating-point literals, 37
fluent interface, 226
folding data structures, 179–181
for comprehensions, 59–61

expanded variable scope, 61
filters in, 60
simple example, 59
using Options with, 308
yielding collections, 60
yielding successive blocks of dynamically

formatted XML, 216
foreach method, 79

traversal operations in functional
programming, 175

formal parameters, 397
FP (see functional programming)
free variables, 397
fsc (fast scala compiler) tool, 353
function literals, 78

closures and, 169
defined, 13, 398
passing to foreach, 16
passing to method for pattern matching, 19

function types, 277
defined, 398

Function.curried method, 185
Functional Java project, 367
functional programming, 165–192, 398

call by name and call by value, 189
component model and, 192
currying, 184
data structures, 172

lists, 173
maps, 173

definition of, 166
filtering operations, 178
folding and reducing operations, 179–181
functions in mathematics, 166
implicit conversions, 186
implicit function parameters, 188
implicits, caution with, 189
lazy vals, 190
mapping operations, 175
mixed paradigm in Scala, 5
Options object, 181
partial functions, 183
pattern matching, 182
recursion, 170
in Scala, 167–170

function literals and closures, 169
tail calls and tail-call optimization, 171
traversal of data structures, 175
variables, immutable values of, 166

FunctionN object, 159
defining traits for, 277
variance under inheritance, 252

functions, 165
(see also functional programming)
defined, 398
higher order, 166, 398
overloaded, 401
Scala, using in Java, 371

futures, 202

Index | 413

G
Gang of Four (GOF) patterns, 325
generator expressions, 62
generators

<- (left-arrow) operator, 60
defined, 398
in for comprehensions, 309

generics, 6, 369–371
defined, 398
Java, 47

using from Scala, 369
Scala, using from Java, 370
variance under inheritance, differences

between Java and Scala, 251
grammars

context-free, 395
EBNF notation for external payroll DSL

grammar, 231
parsing expression grammars (PEGs), 401

guards, pattern matching on, 67

H
Hadoop library, 384
Haskell, QuickCheck tool, 365
hexadecimal integer literals, 36
higher-order functions, 166, 398

I
I/O (input/output)

automatic importation of methods by Scala,
15

NIO (non-blocking I/O), 205
identifiers, characters allowed in, 54
IDEs (integrated development environments),

354–360
Eclipse

developing Scala applications, 355
installing Scala plugin, 354

IntelliJ
developing Scala applications, 357
installing Scala plugins, 356

NetBeans
developing Scala applications, 360
installing Scala plugins, 359

text editors, 360
if statements, 58
immutable values, 398
immutable variables, 5

declaring, 24
imperative languages, 20
imperative programming, 398
implicit arguments, 398
implicit conversions

caution with, 189
defined, 398
defining custom object and conversion

method, 187
in functional programming, 186
in internal DSL payroll implementation,

223
Int into RichInt, 62
Predef.any2ArrowAssoc method, 147
rules for compiler to find and use conversion

methods, 187
implicit function parameters, 188

caution with, 189
implicit keyword, 186

defined, 398
implicit typing, 405
import statements, 19

importing Java types and their members,
45

relative path used in, 46
infinite data structures, 398

laziness and, 285
using lazy vals to manage, 191

infix notation, 53
defined, 398

infix operator notation, 223
infix types, 276, 399
inheritance

case class, 140
defined, 399
definition, 87
linearization of object hierarchy, 159–163
multiple, problems with, 321
single inheritance plus traits in Scala, 322
variance under, 251–259

instance, 89, 399
instantiate, 399
integer literals, 36
IntelliJ IDEA

developing Scala applications, 357
installing Scala plugins, 356

interactive mode, scala command, 10
@interface keyword (Java), 289
internal DSLs, 218, 229

414 | Index

(see also DSLs)
external DSLs versus, 244

interned strings, 39
interpreter, starting, 10
interpreting versus compiling, 12
invariance and invariant, 399
invariant subclassing, 252
invariants, 340
inversion of control (IoC), 334, 399
IOHandlerActorAdapter object, 208
Iterable object, 175

filtering methods, 178
fold and reduce methods, 180
map method, 175

Iterator Pattern, 325

J
jad tool, 351
Java, 1

annotations, 289
aspect-oriented programming, AspectJ, 76
DI (dependency injection), 335
importation of data types into Scala, 45
interfacing with type system, using

existential types, 284
invoking method name identical to Scala

reserved word, 54
JDK (Java Development Kit), 7
JVM (Java Virtual Machine), 2

reflection methods, 248
libraries, interoperability with Scala, 377–

385
AspectJ, 377–381
Hadoop, 384
Spring Framework, 381
Terracotta, 384

package concept for namespaces, 44
regular expressions, 69
Scala interoperability with, 369–377

AnyVal types and Java primitives, 375
Java and Scala generics, 369
JavaBean properties, 374
Scala names in Java code, 375
using Scala functions in Java, 371

static methods, companion objects and,
134–136

static typing, 3
variance, 256–258

java command, 344

java.io.IOException class, 298
java.lang.String class, 186
java.nio package, 205
java.util.concurrent package, 204
JavaBeans

conventions for, 374, 381
vetoable events, 84

javac compiler, 7
Javadoc-style @return annotation, 241
javap tool, 350
JavaRebel tool, 368
JavaTokenParsers, 235
JDK (Java Development Kit), 7
join points, 378
JUnit, 81

running specifications, 365
JVM (Java Virtual Machine), 2
JVM version of Scala, 5

installing, 8

L
lazy evaluation, infinite data structures and,

285
lazy values, 117, 190

Post class (example), 215
lazy, defined, 399
left-associative method invocations, 57
libraries

Java library interoperability, 377–385
AspectJ, 377–381
Hadoop, 384
Spring Framework, 381
Terracotta, 384

miscellaneous smaller Scala libraries, 368
notable Scala libraries, 367

Lift web framework, 367
linearization of object hierarchy, 159–163, 274,

399
algorithm for reference types, 161
hand calculation for C2 (example), 163

LinkedList class that uses Nodes (example),
264

Liskov Substitution Principle, 87
List class

apply and unapplySeq methods, 132
declaration, 47
Nil case object, 267
Scala implementation, 261–263

List object

Index | 415

apply method, parameterized, 251
folding, 179

lists in functional programming, 173
literals, 36–40

boolean, 38
character, 38
defined, 399
floating-point, 37
integer, 36
string, 39
symbol, 39

load-time weaving, 380
loops

do-while, 62
for loops or comprehensions, 59–61
generator expressions in, 62
looping through and matching XML, 213
trampoline, 172
while, 61

lower type bounds, 260, 268

M
Mac OS X

installing Scala, 8
TextMate editor, 360

mailbox for Actors, 196, 399
main method, 15, 399
Manifests, 250
Map companion object, 147
Map values, 146
Map.apply method, 147, 177
MapReduce, 384, 400
maps in functional programming, 173
MatchError object, 151
mathematics, functions in, 166
Maven build tool, 353
members, 90, 400

importing, 45
memoization, 169, 400

support by packrat parsers, 245
messages, 400
metadata, 290

(see also annotations)
adding to declarations, 289
default values and, 292

metaprogramming, 8
MetaScala library, 368
method chaining, 223
methods, 90

abstract types as arguments, 270
adding new methods to classes, 188
class-level, 149
declarations, 26–29

default and named arguments, 26
nesting method definitions, 28

defined, 400
defining, 12
Java static methods and companion objects,

134–136, 373
operators as, 53

infix notation, 53
overriding, 112
overriding accessor methods

indistinguishable from fields,
123–126

parameterized, 251
without parentheses and dots, 55

operator precedence, 56
referencing object method, 149

Meyer, Bertrand, 340
MINA (Apache), 205

events provided by, 209
mixin composition, 4, 316, 322

using traits, 6
mixins, 75

defined, 400
invasive, 324
traits as, 76–82

modules
components and, 313
contract of, 340

multiple inheritance, 400
mutable fields, 18
mutable values, 400

N
Naggati library, 205
named arguments, 27, 400
namespaces, 44

relationship to Scala’s nested package
syntax, 44

ne method (AnyRef), 143
nested classes, 95
.NET

invoking method name identical to Scala
reserved word, 54

regular expressions, 69
.NET version of Scala, 5

416 | Index

NetBeans
developing Scala applications, 360
installing Scala plugins, 359

new operator, 14
Nil case object, 267
NIO (non-blocking I/O), 205
NioSocketAcceptor object, 208
NodeSeq class, \ and \\ methods, 55
NodeSeq object, 212
None class, 41
nonterminals, 232, 400
Nothing type, 259, 267
Null object, 267
nulls

avoiding using Option, Some, and None
classes, 41–43

Options versus, 306

O
object system (Scala), 145–164

classes and objects, 148
package objects, 150

linearization of object hierarchy, 159–163
Predef object, 145
sealed class hierarchies, 151–155
type hierarchy, 155

object-oriented programming (OOP), 89
case classes, 136–142
classes and objects, basics of, 89
companion objects, 126–136
constructors, 92–95
defined, 400
equality of objects, 142
mixed paradigm in Scala, 4
nested classes, 95
overriding members of classes and traits,

111–126
parent classes, 91
reusable software components and, 192
visibility rules, 96–110

objects
basics of, 89
deep matching on contents, 67
defined, 400
instantiation in Scala, 149
in Scala, 5

versus class-level members, 14
ObservableClicks trait (example), 83

working with VetoableClicks trait
(example), 85

Observer Pattern, 77, 326
trait implementing, 77

octal integer literals, 36
Odersky, Martin, 7
Open-Closed Principle (OCP), 153

violation by Visitor Pattern, 328
operator characters, 54

defined, 401
encoding in Java identifiers, 375
in identifiers, 54

operator notation, 398
infix operator notation, 53, 223

operator overloading, 401
operator precedence, 56
operators, 53

conditional, 63
Option class, 41–43

alternatives to exceptions, 312
functional operations on, 181
nulls versus, 306
using with for comprehensions, 308

or operator (||), 63
overloaded functions, 401
overloaded methods, 90

explicit return type requirement, 32
override keyword, 18, 79, 111
overriding class and trait members, 111–126

abstract and concrete fields, 114
in classes, 119
in traits, 114–119

abstract and concrete methods, 112
abstract types, 120–123
accessor methods indistinguishable from

fields, 123–126
final declarations, 112

P
package objects, 150, 401
packages, 44

defining using nested package syntax in
Scala, 44

root package for Scala library classes, 45
packrat parsers, 245, 401
Pair class, 146

apply method, 127
Pair object, 146
parameterized methods, 251

Index | 417

parameterized types, 13, 47, 249
abstract types versus, 270
defined, 401
Manifests, 250
parameterized methods, 251
value types created from, 275

parameters
constructor, initialization of vals and vars,

25
implicit function parameters, 188
order of, named arguments and, 27
required return type annotations, 30

parent classes, 91, 401
parser combinators, external DSLs with, 230–

244
generating paychecks with

PayrollParserCombinators, 239–
244

payroll external DSL, 230–233
Scala implementation of external DSL

grammar, 233–239
Parsers object, 235

documentation of composition operators,
233

~ case class, 238
parsing expression grammars (PEGs), 245,

401
partial application, 401
partial functions, 183, 401
path-dependent types, 272, 401

C.super, 273
C.this, 273
p.Success case class (example), 236
period-delimited path expressions, 274

pattern matching, 19, 64–72
binding nested variables in case clauses, 69
on case classes, 67
defined, 401
on enumerations, 302
extractors in case statements, 138
in functional programming, 182
matching on tuples and guards, 66
polymorphism versus, 20
on regular expressions, 68
on sequences, 65
simple match of boolean values, 64
on type, 65
using on XML structures, 213
using try, catch, and finally clauses, 70

using with case classes, enumerations
versus, 304

variables in matches, 64
pattern matching identifiers, 54
payroll external DSL (example), 230–233
payroll internal DSL (example), 222
PEGs (parsing expression grammars), 245,

401
performance, 6
Pimp My Library design pattern, 188, 401
plain identifiers, 54
pointcuts, 378
polymorphism

family polymorphism, 317
pattern matching versus, 20, 71, 182

postconditions, 340, 402
postfix notation, 53, 402
@Pre annotation, 290
pre-initialized fields, 117
precedence, operator, 56
preconditions, 340, 401
Predef object, 145

any2ArrowAssoc method, 147
declaring types and exceptions, 146
documentation, 148
implicit conversion methods for value types,

158
items imported or defined by, 145
require and assume methods, using for

contract enforcement, 340
stringWrapper method, 186

primary constructor, 92, 402
primitive data types, 402

instances of value types corresponding to,
91

Java, conversion of AnyVal types to, 375
println function, 14, 15

partially applied (example), 183
private keyword, 92, 97
private visibility, 100

scoped, 102–110
production, 402
production rules, 232
projection functions, 212
protected keyword, 97
protected visibility, 99

scoped, 102–110
public visibility, 98
pure (side-effect-free functions), 402

418 | Index

Q
QuickCheck (Haskell), 365

R
Range object, 287
Range.Inclusive class, 62
raw strings in regular expression pattern

matching, 69
recursion, 28, 402

explicit return type annotation, 30, 31
in functional programming, 170
tail-call, 171

foldLeft and reduceLeft, 181
reducing data structures, 179–181
Reductio tool, 367
reference types, 91, 402

linearization algorithm for, 160, 161
listed, 156
parent of, AnyRef, 155
testing equality, 143

referential transparency, 402
refinement in compound type declarations,

276
defined, 402

reflection, 248
Regex class, 69
regular expressions

matching on, 68
use in parsing, 235

reified types, 402
relative imports, 46
REPL (Read, Evaluate, Print, Loop), 402
Request case class, 207
requirements specification, 363
reserved words

listing of reserved words in Scala, 49
not allowed in identifiers, 54

@Retention annotation, 290
@return annotation, 241
return keyword, 13, 31
return type for methods, 30–36

required explicit declarations of, 31
using Option, Some, and None types, 41

RichInt class, 62
RichString class, 186
right-associative method invocations, 57
Ruby

dynamic typing, 2

exceptions, 312
method resolution in, 283

S
sbaz tool, 10, 352

installing ScalaCheck, 365
SBT (simple build tool), 353
Scala

benefits of, 7
code examples, 10–16
combining with other languages, 8
installing, 8
introduction to, 4
official website, 8
resources for more information, 10

scala command, 10, 12, 345–350
-cp option, 16, 346
commands available in scala interactive

mode, 347
documentation, 348
interactive mode, 10
invoking scripts, 348
limitations of, versus scalac, 348
options, 347
running in interpreted mode, 346
script or object specified for, 346

scala-tool-support package, 360
scala.actors.Actor class, 194
@scala.reflect.BeanProperty annotation, 374,

381
scalability, Scala support for, 6
scalable abstractions (see components)
scalable language (Scala), 7
scalac compiler, 10, 343

-X options, 345
-Xscript option, 349
command options, 344
compiling code into JVM .class file, 16
plugin architecture, 345
scala command versus, 348

ScalaCheck, 365
scaladoc tool, 10, 352
Scaladocs, 402
ScalaObject class, 157

$tag method, 351, 393
scalap tool, 350
ScalaTest, 361
Scalax library, 368
Scalaz library, 367

Index | 419

scope
defined, 402
expanded variable scope in for

comprehensions, 61
package objects, 150
of private and protected visibility, 102–110

scripting languages, popularity of, 2
sealed class hierarchies, 151–155
sealed keyword, 402
self types, 6
self-type annotations, 279–283

and abstract type members, 317
defined, 403
TwitterClientComponent (example), 337

Seq class, first and firstOption methods, 312
sequences

matching on, 65
Range.Inclusive class, 62

sequential composition, 233
combinator operators, 234

@serialVersionUID annotation, 291
Set companion object, 147
Set values, 146
sets in functional programming, 174
short-circuiting operators (&& and ||), 63
side-effect-free, 403
signature, 90, 403
single inheritance, 403
Single Responsibility Principle, 76
singleton objects, 14, 134

eliminating need for Singleton Pattern, 325
methods defined in companion objects,

373
singleton types, 279, 403
singletons, 403

Scala classes declared as, 149
sleeping barber problem (demonstrating

Actors), 197–202
SMTP mail server (example), 205–210

codec for SMTP, 206
conversation with server, 209
setup, 207
SmtpHandler class, 208

Some class, 41
@specialized annotation, 297
Specs library, 57, 363–365

using for BDD specification exercising
combined Button and Subject
types, 80

Spring Framework, 381
stable types, 403
state, 403
static members, Scala and, 148
static typing, 403

versus dynamic typing, 2
StaticAnnotation class, 291

annotations derived from, 294
Stream class, 286
strict, 403
String class, 186

implicit conversion to RichString, 187
string literals, 39
strong versus weak typing, 3
structural types, 77, 283

defined, 403
subtypes, 395, 403
super keyword, 114
supertype, 403
@switch annotation, 296
symbol literals, 39
symbols, 133

defined, 403
in method names and other identifiers, 53

T
$tag method (ScalaObject), 351, 393
tail calls, 171

@tailRec annotation and, 296
foldLeft and reduceLeft operations, 181
trampoline for, 172

tail-call recursion, 403
@tailRec annotation, 296
TDD (Test-Driven Development), 81, 361–

367
defined, 403
Design by Contract and, 342
ScalaCheck tool, 365
ScalaTest tool, 361
Specs library, 363–365

terminals, 232, 403
Terracotta library, 384
test double, 404
text editors, 360
TextMate editor, 360
this keyword, 18, 89

self versus, in self-type annotations, 319
self-type annotations, 279
super versus, 114

420 | Index

threading in Scala, 203
one-off threads, 203
using java.util.concurrent, 204

@throws annotation, 298
trait keyword, 77
traits, 4, 75–88

aspects versus, 381
constructing, 86

class or trait, 87
initializing values in traits, 87

defined, 404
effective design of, 321–325
functions as instances of, 278
implementing components with, 337
as mixins, 76–82

vetoing click events, 84
overriding accessor methods

indistinguishable from fields, 125
overriding members of

abstract and concrete fields, 114–119
promotion of mixin composition, 316
stacking, 82

trampolines, 172, 404
try, catch, and finally clauses, 70
tuples, 40

defined, 404
pattern matching on, 66
value type, syntax for, 275
ways to create two-item tuple, 148

Twitter client, component model for (example),
335–340

type alias, 74
type annotations, 12

defined, 404
required explicit type annotations, 30
self-type annotations, 279–283

type bounds, 256, 259–267
defined, 404
List class, Scala implementation, 261–263
lower, 260
upper, 259
using in abstract type declarations, 268
views and view bounds, 263

type constructors, 404
type designators, 275, 404
type erasure, 90

defined, 405
getClass method on JVM, 248

type inference, 29–36, 405

type projections, 279, 405
type system, 2, 247

(see also data types)
Scala, 6

type variance, 251, 405
(see also variance under inheritance)

type variance annotations, 405
types, 247

(see also data types)
defined, 404

typing, 2

U
unapply method, 129–131
unapplySeq method for collections, 132
@unchecked annotation, 296
Unicode characters, 38
Uniform Access Principle, 97, 124
universe (sbaz remote repository), 352
upper type bounds, 259, 268

V
val keyword, 14

in declaration of read-only variable, 11
using in declaration of immutable variable,

24
vals, lazy (see lazy values)
Value class, 302
Value object, 405
value types, 91, 275

defined, 405
function types, 277
implicit conversions by Predef object

methods, 158
infix types, 276
listed, 156
parameterized types, 275
singleton types, 279
tuples, 275
type designators, 275
type projections, 279
use in type bounds expressions, 268

Value.toString method, 73
values, 405
var keyword, 18
variable identifiers, 54
variable-length argument lists, 12, 147
variables

Index | 421

binding nested variables in case clauses, 69
declarations, 24
defined, 405
expanded scope in for expressions, 61
immutable values in functional

programming, 166
in matches, 64
mutable and immutable, 5
in static and dynamic typing, 2

variance annotations, 249
summary of, 251

variance under inheritance, 251
abstract versus parameterized types, 270
variance in Scala versus Java, 256–259
variance of mutable types, 255

versions, Scala, 9
VetoableClicks trait (example), 85
view bounds, 264–267, 405

implementing LinkedList class that uses
Nodes, 264

views, 187, 263–267, 405
Vim editor, 360
visibility, 96–110, 405

fine-grained visibility rules in Scala, 314
private, 100
protected, 99
public, 98
scoped private and protected visibility, 102–

110
summary of visibility scopes, 97

Visitor Pattern, alternative to, 326–334

W
weak versus strong typing, 3
weaving, load-time, 380
web application frameworks, 367
web page for this book, xxi

code examples, xix, 10
while loops, 61

implementing using by-name parameters
and currying, 189

with keyword, 79
wrapper classes in Scala, 186

Rich wrapper classes defined in
scala.runtime package, 187

X
XML, 211–216

exploring using NodeSeq tools, 212
looping and matching, 213
reading, 211
writing, 214

blogging system (example), 215–216

Y
yield keyword, 60

422 | Index

About the Authors
Dean Wampler is a consultant, trainer, and mentor with Object Mentor, Inc. He spe-
cializes in Scala, Java, and Ruby, and works with clients on application design strategies
that combine object-oriented programming, functional programming, and aspect-
oriented programming. He also consults on Agile methods, such as Lean and XP. Dean
is a frequent speaker at industry and academic conferences on these topics. He has a
Ph.D. in physics from the University of Washington.

Alex Payne is Platform Lead at Twitter, Inc., where he develops services that enable
programmers to build atop the popular social messaging service. Alex has previously
built web applications for political campaigns, non-profits, and early-stage startups,
and supported information security efforts for military and intelligence customers. In
his free time, Alex studies, speaks, and writes about the history, present use, and evo-
lution of programming languages, as well as minimalist art and design.

Colophon
The animal on the cover of Programming Scala is a Malayan tapir (Tapirus indicus),
also called an Asian tapir. It is a black-and-white hoofed mammal with a round, stocky
body similar to that of a pig. At 6–8 feet long and 550–700 pounds, the Malayan is the
largest of the four tapir species. It lives in tropical rain forests in Southeast Asia.

The Malayan tapir’s appearance is striking: its front half and hind legs are solid black,
and its midsection is marked with a white saddle. This pattern provides perfect cam-
ouflage for the tapir in a moonlit jungle. Other physical characteristics include a thick
hide, a stumpy tail, and a short, flexible snout. Despite its body shape, the Malayan
tapir is an agile climber and a fast runner.

The tapir is a solitary and mainly nocturnal animal. It tends to have very poor vision,
so it relies on smell and hearing as it roams large territories in search of food, tracking
other tapirs’ scents and communicating via high-pitched whistles. The Malayan tapir’s
predators are tigers, leopards, and humans, and it is considered endangered due to
habitat destruction and overhunting.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Welcome to Programming Scala
	Conventions Used in This Book
	Using Code Examples
	Getting the Code Examples

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Zero to Sixty: Introducing Scala
	Why Scala?
	If You Are a Java Programmer…
	If You Are a Ruby, Python, etc. Programmer…
	Introducing Scala
	The Seductions of Scala

	Installing Scala
	For More Information
	A Taste of Scala
	A Taste of Concurrency
	Recap and What’s Next

	Chapter 2. Type Less, Do More
	In This Chapter
	Semicolons
	Variable Declarations
	Method Declarations
	Method Default and Named Arguments (Scala Version 2.8)
	Nesting Method Definitions

	Inferring Type Information
	Literals
	Integer Literals
	Floating-Point Literals
	Boolean Literals
	Character Literals
	String Literals
	Symbol Literals

	Tuples
	Option, Some, and None: Avoiding nulls
	Organizing Code in Files and Namespaces
	Importing Types and Their Members
	Imports are Relative

	Abstract Types And Parameterized Types
	Reserved Words
	Recap and What’s Next

	Chapter 3. Rounding Out the Essentials
	Operator? Operator?
	Syntactic Sugar

	Methods Without Parentheses and Dots
	Precedence Rules

	Domain-Specific Languages
	Scala if Statements
	Scala for Comprehensions
	A Dog-Simple Example
	Filtering
	Yielding
	Expanded Scope

	Other Looping Constructs
	Scala while Loops
	Scala do-while Loops
	Generator Expressions

	Conditional Operators
	Pattern Matching
	A Simple Match
	Variables in Matches
	Matching on Type
	Matching on Sequences
	Matching on Tuples (and Guards)
	Matching on Case Classes
	Matching on Regular Expressions
	Binding Nested Variables in Case Clauses
	Using try, catch, and finally Clauses
	Concluding Remarks on Pattern Matching

	Enumerations
	Recap and What’s Next

	Chapter 4. Traits
	Introducing Traits
	Traits As Mixins

	Stackable Traits
	Constructing Traits
	Class or Trait?

	Recap and What’s Next

	Chapter 5. Basic Object-Oriented Programming in
 Scala
	Class and Object Basics
	Parent Classes
	Constructors in Scala
	Calling Parent Class Constructors

	Nested Classes
	Visibility Rules
	Public Visibility
	Protected Visibility
	Private Visibility
	Scoped Private and Protected Visibility
	Final Thoughts on Visibility

	Recap and What’s Next

	Chapter 6. Advanced Object-Oriented Programming In Scala
	Overriding Members of Classes and Traits
	Attempting to Override final Declarations
	Overriding Abstract and Concrete Methods
	Overriding Abstract and Concrete Fields
	Overriding Abstract and Concrete Fields in Traits
	Overriding Abstract and Concrete Fields in Classes
	Overriding Abstract Types
	When Accessor Methods and Fields Are Indistinguishable: The Uniform Access Principle

	Companion Objects
	Apply
	Unapply
	Apply and UnapplySeq for Collections
	Companion Objects and Java Static Methods

	Case Classes
	Syntactic Sugar for Binary Operations
	The copy Method in Scala Version 2.8
	Case Class Inheritance

	Equality of Objects
	The equals Method
	The == and != Methods
	The ne and eq Methods
	Array Equality and the sameElements Method

	Recap and What’s Next

	Chapter 7. The Scala Object System
	The Predef Object
	Classes and Objects: Where Are the Statics?
	Package Objects

	Sealed Class Hierarchies
	The Scala Type Hierarchy
	Linearization of an Object’s Hierarchy
	Recap and What’s Next

	Chapter 8. Functional Programming in Scala
	What Is Functional Programming?
	Functions in Mathematics
	Variables that Aren’t

	Functional Programming in Scala
	Function Literals and Closures
	Purity Inside Versus Outside

	Recursion
	Tail Calls and Tail-Call Optimization
	Trampoline for Tail Calls

	Functional Data Structures
	Lists in Functional Programming
	Maps in Functional Programming
	Sets in Functional Programming
	Other Data Structures in Functional Programming

	Traversing, Mapping, Filtering, Folding, and Reducing
	Traversal
	Mapping
	Filtering
	Folding and Reducing
	Functional Options

	Pattern Matching
	Partial Functions
	Currying
	Implicits
	Implicit Conversions

	Implicit Function Parameters
	Final Thoughts on Implicits

	Call by Name, Call by Value
	Lazy Vals
	Recap: Functional Component Abstractions

	Chapter 9. Robust, Scalable Concurrency with
 Actors
	The Problems of Shared, Synchronized State
	Actors
	Actors in Abstract

	Actors in Scala
	Sending Messages to Actors
	The Mailbox
	Actors in Depth
	Effective Actors

	Traditional Concurrency in Scala: Threading and Events
	One-Off Threads
	Using java.util.concurrent
	Events

	Recap and What’s Next

	Chapter 10. Herding XML in Scala
	Reading XML
	Exploring XML
	Looping and Matching XML

	Writing XML
	A Real-World Example

	Recap and What’s Next

	Chapter 11. Domain-Specific Languages in Scala
	Internal DSLs
	A Payroll Internal DSL
	Infix Operator Notation
	Implicit Conversions and User-Defined Types
	Apply Methods
	Payroll Rules DSL Implementation
	Internal DSLs: Final Thoughts

	External DSLs with Parser Combinators
	About Parser Combinators
	A Payroll External DSL
	A Scala Implementation of the External DSL Grammar
	Generating Paychecks with the External DSL
	Internal Versus External DSLs: Final Thoughts

	Recap and What’s Next

	Chapter 12. The Scala Type System
	Reflecting on Types
	Understanding Parameterized Types
	Manifests
	Parameterized Methods

	Variance Under Inheritance
	Variance of Mutable Types
	Variance In Scala Versus Java
	Implementation Notes

	Type Bounds
	Upper Type Bounds
	Lower Type Bounds
	A Closer Look at Lists
	Views and View Bounds

	Nothing and Null
	Understanding Abstract Types
	Parameterized Types Versus Abstract Types

	Path-Dependent Types
	C.this
	C.super
	path.x

	Value Types
	Type Designators
	Tuples
	Parameterized Types
	Annotated Types
	Compound Types
	Infix Types
	Function Types
	Type Projections
	Singleton Types

	Self-Type Annotations
	Structural Types
	Existential Types
	Infinite Data Structures and Laziness
	Recap and What’s Next

	Chapter 13. Application Design
	Annotations
	Enumerations Versus Pattern Matching
	Thoughts On Annotations and Enumerations
	Enumerations Versus Case Classes and Pattern Matching

	Using Nulls Versus Options
	Options and for Comprehensions

	Exceptions and the Alternatives
	Scalable Abstractions
	Fine-Grained Visibility Rules
	Mixin Composition
	Self-Type Annotations and Abstract Type Members

	Effective Design of Traits
	Design Patterns
	The Visitor Pattern: A Better Alternative
	Dependency Injection in Scala: The Cake Pattern

	Better Design with Design By Contract
	Recap and What’s Next

	Chapter 14. Scala Tools, Libraries, and IDE Support
	Command-Line Tools
	scalac Command-Line Tool
	The scala Command-Line Tool
	Limitations of scala versus scalac

	The scalap, javap, and jad Command-Line Tools
	The scaladoc Command-Line Tool
	The sbaz Command-Line Tool
	The fsc Command-Line Tool

	Build Tools
	Integration with IDEs
	Eclipse
	Installing the Scala plugin
	Developing Scala applications

	IntelliJ
	Installing the Scala plugins
	Developing Scala applications

	NetBeans
	Installing the Scala plugins
	Developing Scala applications

	Text Editors

	Test-Driven Development in Scala
	ScalaTest
	Specs
	ScalaCheck

	Other Notable Scala Libraries and Tools
	Lift
	Scalaz
	Scalax
	MetaScala
	JavaRebel
	Miscellaneous Smaller Libraries

	Java Interoperability
	Java and Scala Generics
	Using Scala Functions in Java
	JavaBean Properties
	AnyVal Types and Java Primitives
	Scala Names in Java Code

	Java Library Interoperability
	AspectJ
	The Spring Framework
	Terracotta
	Hadoop

	Recap and What’s Next

	Appendix. References
	Glossary
	Index

